设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;

设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f″(η)+f′(η)=1.

证明如下:

1、由于f(x)为奇函数,则f(0)=0,由于f(x)在[-1,1]上具有二阶导数,由拉格朗日定理,存在ξ∈(0,1),使得f′(ξ)=f(1)−f(0)  /  1−0   =1

2、由于f(x)为奇函数,则f'(x)为偶函数,由(1)可知存在ξ∈(0,1),使得f'(ξ)=1,且f'(-ξ)=1,

令φ(x)=f'(x)+f(x),由条件显然可知在φ(x)在[-1,1]上可导,由拉格朗日中值定理可知,存在η∈(-1,1),使得φ(1)−φ(−1)  / 1−(−1)    =φ′(η)成立;

φ(1)-φ(-1)=f'(1)+f(1)-f'(-1)-f(-1)=2f(1)=2,从而φ'(η)=1成立,即f''(η)+f'(η)=1

扩展资料:

奇函数的特点:

1、奇函数图象关于原点(0,0)对称。

2、奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。

3、若f(x)为奇函数,且在x=0处有意义,则f(0)=0。

4、设f(x)在定义域I上可导,若f(x)在I上为奇函数,则f(x)的导函数在I上为偶函数。

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2018-03-16
证明:(1)由于f(x)为奇函数,则f(0)=0,由于f(x)在[-1,1]上具有二阶导数,由拉格朗日定理,存在ξ∈(0,1),使得f′(ξ)=
f(1)?f(0)
1?0
=1

(2)由于f(x)为奇函数,则f'(x)为偶函数,由(1)可知存在ξ∈(0,1),使得f'(ξ)=1,且f'(-ξ)=1,
令φ(x)=f'(x)+f(x),由条件显然可知在φ(x)在[-1,1]上可导,由拉格朗日中值定理可知,存在η∈(-1,1),使得
φ(1)?φ(?1)
1?(?1)
=φ′(η)
成立,φ(1)-φ(-1)=f'(1)+f(1)-f'(-1)-f(-1)=2f(1)=2,从而φ'(η)=1成立,即f''(η)+f'(η)=1本回答被网友采纳
第2个回答  2021-09-17

简单计算一下即可,答案如图所示

相似回答