什么是jensen不等式?

如题所述

(Jensen)不等式 如果f(x)在(a,b)上是凸函数,x1,x2都在(a,b)上,证明不等式:f[(x1+x2)/2]≥1/2[f(x1)+f(x2)]成立.
证明:证明f[(x1+x2)/2]≥1/2[f(x1)+f(x2)]成立可以转化为证明f[(x1+x2)/2]-f(x1)≥f(x2)-f[(x1+x2)/2]成立.不妨设x1<x2.根据拉格朗日(Lagrange)中值定理,可得:f[(x1+x2)/2]-f(x1)=f’(ξ1)(x2-x1)/2, f(x2)-f[(x1+x2)/2=f’(ξ2)(x2-x1)/2,其中ξ1在x1和(x1+x2)/2之间,ξ2在(x1+x2)/2和x2之间,由假定条件x1<x2可知,ξ1<ξ2.由于f(x)在(a,b)上是凸函数,所以f(x)在(a,b)上满足f’’(x)<0,所以f’(x)在(a,b)上递减,由于ξ1<ξ2,则有f’(ξ1)>f’(ξ2),所以{f[(x1+x2)/2]-f(x1)}-{f(x2)-f[(x1+x2)/2]}=(x2-x1)[ f’(ξ1)- f’(ξ2)]/2>0,所以f[(x1+x2)/2]-f(x1)>f(x2)-f[(x1+x2)/2],所以f[(x1+x2)/2]>1/2[f(x1)+f(x2)].如果假设x1<x2,结果是一样的;如果x1=x2,则显然f[(x1+x2)/2]=1/2[f(x1)+f(x2)],因此我们证明了f[(x1+x2)/2]≥1/2[f(x1)+f(x2)]成立.
同理如果f(x)在(a,b)上是凹函数,x1,x2都在(a,b)上,则有不等式:1/2[f(x1)+f(x2)]≥f[(x1+x2)/2]成立.
对f(x)=tanx求二阶导数:f'(x)=1/cos^2x
f''(x)=1/cos^3x*(-2)*(cosx)'=2tanx/cos^2x
显然当x∈(0,π/2)时f''(x)>0,是凹函数,故有1/2[f(x1)+f(x2)]>f[(x1+x2)/2].
温馨提示:答案为网友推荐,仅供参考
相似回答