已知a和b为实数,求证:a的平方+b的平方+c的平方大于等于ab+bc+ac

如题所述

证明:
a²+b²+c²-(ab+bc+ac)
=½x (2a²+2b²+2c²-2ab-2bc-2ac)
=½x[(a-b)²+(b-c)²+(c-a)²]
∵(a-b)²≥0,(b-c)²≥0,(c-a)²≥0
∴(a-b)²+(b-c²+(c-a)²≥0,
∴½x [(a-b)²+(b-c²+(c-a)²]≥0,
即a²+b²+c²≥(ab+bc+ac)
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-04-20
a²+b²+c²-(ab+bc+ac)
=1/2×【2(a²+b²+c²)-2(ab+bc+ac)】
=1/2×(a²-2ab+b²+a²-2ac+c²+b²-2bc+c²)
=1/2×【(a-b)²+(a-c)²+(b-c)²】
因为a、b、c为实数,所以1/2×【(a-b)²+(a-c)²+(b-c)²】≥0
也就是a的平方+b的平方+c的平方大于等于ab+bc+ac
第2个回答  2013-04-20
a²+b²≥2ab
b²+c²≥2bc
c²+a²≥2ca
相加得2(a²+b²+c²)≥2(ab+bc+ca)
所以a²+b²+c²≥ab+bc+ca.
第3个回答  2013-04-20
假设
a^2+b^2+c^2=ab+bc+ac
两边左右同乘以2
2×a^2+2b^2+2c^2=2ab+2bc+2ac
2a^2+2b^2+2c^2-2ab-2bc-2ac=0
(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
(a-b)^2+(b-c)^2+(c-a)^2=0
可知左式只有在a=b=c的情况下等于0,如不等左必大于右(平方的定义)
左右同乘以2并不会影响原来的大于号,
所以a的平方+b的平方+c的平方大于等于ab+bc+ac
第4个回答  2013-04-20
∵(a-b)^2+(b-c)^2+(c-a)^2>=0
2(a^2+b^2+c^2)-2(ab+bc+ca)>=0
∴a^2+b^2+c^2>=ab+bc+ca
【OK?】
第5个回答  2013-04-20
给你一个高级一点的证法:

由柯西不等式立得:
(a^2+b^2+c^2)(b^2+c^2^a^2)>=(ab+bc+ca)^2.
两边开方即为所求。
相似回答