如何理解数列的有界性与收敛性的区别?

如题所述

数列极限的描述性定义:对于数列{yn},设有常数A,如果当n无限增大时,yn无限接近于A(|yn-A|无限接近于0),则称当n趋近于无穷大时{yn}以A为极限。yn→A(n→∞)。有极限的数列称为收敛数列,否则称数列发散。若数列{yn}以A为极限,亦称{yn}收敛于A。

数列的精确性定义:设有数列{yn}和实数A,如果对任意给定的正数ε,不论它多么小,总存在一个正整数N,当n>N时,丨yn一A丨<ε恒成立,则称当n趋于无穷时,数列{yn}以A为极限。记作yn→A(n→∞)。

前者通俗,直观,易为初学者所接受,但它比较粗糙,笼统,在理论上应用很不方便;后者十分严密,是进行理论证明的重要工具,但它相当抽象,不易为初学者所理解。因为这样,所以不少数学分析教材中,关于数列的极限,往往首先讲解描述性定义,以增强学生的感性认识;然后再引进精确定。

数列有界是数列收敛的必要条件,而不是充分条件。数列极限不等式:设有数列{xn},{yn},如果从某一项开始。

有xn≤yn,如果从某一项开始,有xn≤yn,且两数列极限分别为A,B.则A≤B。极限的基本性质:唯一性,局部有界性,局部保号性。极限的四则运算,注意“约去零因式法”。

温馨提示:答案为网友推荐,仅供参考
相似回答