证明:若任意x,y∈R,有f(x+y)=f(x)+f(y),且f(x)在0连续,则函数f(x)在R连续,且f(x)=ax,其中a=f(1)是常数

如题所述

显然f(0)=0.
由f(x+y)-f(x)=f(y)-f(0)以及f在0点的连续性知f在任意一点x连续。
令a=f(1)。归纳可得f(nx)=nf(x),n为整数。
于是f(n)=an, f(1/n)=a/n,令x=1/m得f(n/m)=an/m。
从而f(x)=ax对有理数成立,由连续性知对任意x∈R成立。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-10-07
经典的柯西方程,网上已有许多关于这方面的资料:http://wenku.baidu.com/view/3e609659312b3169a451a4b8.html追问

能不能写一下解题过程

参考资料:百度文库

相似回答