为什么可导的函数一定连续?

如题所述

利用定积分的柯西-许瓦茨不等式,可得|f(1)|小于等于右边的定积分,不等式恒成立则,|f(x)|的最大值小于等于右边的定积分。

令 F(x) = f(x) - x, F(0) > 0, F(1) < 0, F(x)在[0,1]上可导=>连续。

故至少在(0,1)内有一点ξ,使得 F(ξ) = 0, 即 f(ξ) = ξ

下面用反证法证明 ξ 只有一个。

假设存在ξ1,ξ2∈(0,1) , F(ξ1) =0, 且 F(ξ2) = 0

由罗尔中值定理,必存在 η ∈(ξ1,ξ2), F '(η) = f '(η) - 1 = 0

=> f '(η) = 1 这与 f(x)的导数不为1 矛盾,假设错误。

因此在(0,1)内有唯一点,使得 f(ξ) = ξ

函数可导的条件:


如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。


可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

温馨提示:答案为网友推荐,仅供参考
相似回答