拉普拉斯分块矩阵公式

如题所述

第1个回答  2023-01-04

在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。

1.拉普拉斯展开的公式是:

对于任意i,j∈ {1, 2, ...,n}:

2.拉普拉斯在1772年的论文中给出了行列式展开的一般形式,现在称为拉普拉斯定理。拉普拉斯定理建立在子式和余子式的基础上,说明了如果将B关于某k行的每一个子式和对应的代数余子式的乘积加起来,那么得到的仍然是B的行列式。定理的证明与按一行(一列)展开的情况一样,都是通过建立置换间的双射来证明两者相等。

3.在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。

4.设B是一个  的矩阵,  。为了明确起见,将  的系数记为  ,其中

考虑B的行列式|B|中的每个含有  的项,它的形式为:

其中的置换τ ∈Sn使得τ(i) =j,而σ ∈Sn-1是唯一的将除了i以外的其他元素都映射到与τ相同的像上去的置换。显然,每个τ都对应着唯一的σ,每一个σ也对应着唯一的τ。因此我们创建了Sn−1与{τ∈Sn:τ(i)=j}之间的一个双射。置换τ可以经过如下方式从σ得到:

定义σ' ∈Sn使得对于1 ≤k≤n−1,σ'(k) = σ(k)并且σ'(n) =n,于是sgnσ' = sgn σ。然后

由于两个轮换分别可以被写成  和  个对换,因此

因此映射σ ↔ τ是双射。由此:

 

 

 

从而拉普拉斯展开成立。

相似回答