判断一个函数是否为奇函数,只需证明它在区间上是否连续。

如题所述

证明:不妨设 ,f(b)>0.令

E={x|f(x)≤0,x∈[a,b]}.

由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,

存在ξ=supE∈[a,b].

下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上,

(i)若f(ξ)<0,则ξ∈[a,b).由函数连续的局部保号性知

存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE,

存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<ξ,

这又与supE为E的最小上界矛盾。即推得f(ξ)=0。

定理的含义:

(1)函数在区间[a,b]上的图象连续不断,又它在区间[a,b]端点的函数值异号,则函数在[a,b]上一定存在零点

(2)函数值在区间[a,b]上连续且存在零点,则它在区间[a,b]端点的函数值可能异号也可能同号

(3)定理只能判定零点的存在性,不能判断零点的个数
温馨提示:答案为网友推荐,仅供参考
相似回答