求3样物品的仿生学功能简介

求3样物品的仿生学功能简介
做作业啊。。我想不出-。-求能人帮助
我只想到飞机。潜水艇。还差1个。
我又不会写仿生了哪些功能。。怎么写。。急死我

-- 结构构件
对于构件,在截面面积相同的情况下,把材料尽可能放到远离中和轴的位置上,是有效的截面形状。有趣的是,在自然界许多动植物的组织中也体现了这个结论。例如:“疾风知劲草”,许多能承受狂风的植物的茎部是维管状结构,其截面是空心的。支持人承重和运动的骨骼,其截面上密实的骨质分布在四周,而柔软的骨髓充满内腔。在建筑结构中常被采用的空心楼板、箱形大梁、工形截面钣梁以及折板结构、空间薄壁结构等都是根据这条结论得来的。
-- 斑马
斑马生活在非洲大陆,外形与一般的马没有什么两样,它们身上的条纹是为适应生存环境而衍化出来的保护色。在所有斑马中,细斑马长得最大最美。它的肩高140-160厘米,耳朵又圆又大,条纹细密且多。斑马常与草原上的牛羚、旋角大羚羊、瞪羚及鸵鸟等共外,以抵御天敌。人类将斑马条纹应用到到军事上是一个是很成功仿生学例子。照相机

青蛙肌肉和电池的发明

人类自古就知道了自然界中种种电的现象,如雷、闪电、电鱼,加热时会产生电的电石,甚至琥珀摩擦生静电的方法。到十七世纪,德国的葛利克制成了一种旋转硫磺球的摩擦起电机后,才有人对电加以科学的探讨。到十八世纪,荷兰莱登大学的一位教授发明了一种可以蓄积摩擦电的玻璃瓶,于是作为一种游戏而风靡全欧洲。由于这种摩擦电贮存在莱登瓶中,一次放电就马上消失,所以也没有太大的用处。

当时在意大利的波隆那大学解剖学教授贾法尼发现,以金属棒接触剥去皮的青蛙腿部肌肉时,青蛙的肌肉便会收缩。他认为一切动物都带有电,且积蓄在肌肉中,金属棒的接触使动物放电,肌肉会因电的冲击而收缩。这一动物放电的发现,引起全欧洲科学家的莫大反响。同为意大利人的帕维亚大学物理学教授伏特,对此也进行了探讨,却得到另一个结论:肌肉的收缩不是因动物电的放电,而是因接触了金属而产生电所引起的。1800年,伏特根据动物放电的现象设计完成了一种蓄电的新装置。这种装置是把数十片银板和锡板交互重叠,在每对板之间插入浸过盐水的布条作为电堆;然而用金属片和盐水钵分别替代金属板和盐水布,不必事先充电,就可源源不断地取出电来。伏特的这项发明实实在在地让英国科学家们震惊。拿破仑还邀请他到巴黎,亲眼目睹他的实验,赐于他金牌、丰厚的年俸和爵位。电池在日常生活、科学和工业上给人类带来了福音,那些赞美和荣誉就显得微不足道了。

心脏活动电流与心电图发明

十九世纪,瑞士解剖学家凯利克尔和德国生理学家缪勒用鸽子证明了心脏活动电流的存在。德国生理学家维伦斯坦首次用图形表现神经和肌肉之活动电流,继而有许多生理学家用他发明的装置来显示动物的心脏活动电流。这种装置仅仅是作研究用,而且必须通过解剖让心脏在暴露的情况进行测定。那么,是否有办法不要把心脏暴露出来,而就在体表内测定呢?当时恰好法国物理学家利普曼发明了一种毛细管静电计,这就促使了法国生理学家瓦勒采用了新发明的毛细管静电计来测量人心脏活动的电压,并描绘了图形。

这些研究结果引起了荷兰生理学家爱因多汶的注意,并把瓦勒所做的心脏活动电压的图形称作“心电图”,然后他潜心研究,证实了心电图对临床诊断非常有价值。于是他就致力于精确度高的心电图记录计的研制,几年后,他终于研制出一种高精度的石英系的弦电流计,用于心电图测量上,可精确地记录人的心电图。

爱因多汶所发明的心电图记录计最大的缺点是重量超过140公斤,无法带进病房,然而也不可能把患有严重心脏患者带到他的实验室去。既然不能做临床试验,再好的装置也是没有用的。因此,有人建议他不妨把大学附属医院住院患者和他的实验室装置用电线连接起来,这样他就将许多心脏病患者的心电图记录下来,他把这命名为“远隔心电图”。爱因多汶的心电图记录计在心脏病临床诊断中发挥了巨大的作用。迄今为止,心电图还是我们诊断心脏病的通用设备。▲
水母的顺风耳

“燕子低飞行将雨,蝉鸣雨中天放晴。”生物的行为与天气的变化有一定关系。沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临。

水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了。这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了。

原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲。这种次声波人耳无法听到,小小的水母却很敏感。仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就剌激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声。

仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官。把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度。这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
从萤火虫到人工冷光

自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。

在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。

在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。

科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。

早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。

现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2009-03-22
不知谁了根据袋鼠发明了越野汽车。。鲁班根据茅草发明了锯子。。。富兰克林进行风筝实验发明了避雷针。。本回答被提问者采纳
相似回答