菱形判定条件是什么

如题所述

菱形判定条件是:
四边相等的四边形或一组邻边相等的平行四边形或对角线垂直的矩形。

性质:
菱形具有平行四边形的一切性质;
菱形的四条边都相等;
菱形的对角线互相垂直平分且平分每一组对角
菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形还是中心对称图形
菱形的面积等于两条对角线乘积的一半;当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积S=底×高
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-07-16
四边相等的四边形是菱形
有一组邻边相等的正方形是菱形
对角线互相垂直的四边形是菱形
第2个回答  2020-01-13
是平行四边形的。也是菱形的。三条边都相等代表着有一组对边相等,有一组对边平行,它就是满足平行四边形的判定条件的。又因为三条边都相等,其中包括一组邻边相等,所以它是菱形。
第3个回答  2014-07-16
四边相等的四边形 一组邻边相等的平行四边形 对角线垂直的矩形追问

一组对边相等可以吗

追答

不可以,有可能是等腰梯形

追问

谢了

这个是初三的吧

追答

是的

是的

本回答被提问者采纳
第4个回答  2020-05-11
菱形满足有一个内角为直角的条件就变成矩形(有一个内角为直角的菱形是矩形)
反过来又要满足四条边都相等的矩形这一条件才是菱形.(四条边都相等的矩形是菱形)
相似回答