为何是无穷小量

如题所述

无穷小量即以数0为极限的变量,无限接近于0。当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。

例如,f(x)=(x-1)^2是当x→1时的无穷小量,f(n)<1/n是当n→∞时的无穷小量,f(x)=sin(x)是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

根据无穷小量的定义,正确答案应为:A:In x (当x→1时,值无限接近0)

扩展资料

某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。


求极限基本方法有



1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;



2、无穷大根式减去无穷大根式时,分子有理化;




3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。



4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜