为什么任何一个特征值对应无数个特征向量?

如题所述

特征向量的原始定义Ax=λx,λx是方阵A对向量x进行变换后的结果,而且x是特征向量的话,k
x也是特征向量(k是常数且不为零),所以所谓的特征向量不是一个向量而是一个向量族。

线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

扩展资料:

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

特征函数满足如下特征值方程:其中λ是该函数所对应的特征值。这样一个时间的函数,如果λ = 0,它就不变,如果λ为正,它就按比例增长,如果λ是负的,它就按比例衰减。例如,理想化的兔子的总数在兔子更多的地方繁殖更快,从而满足一个正λ的特征值方程。

参考资料来源:百度百科--特征向量

参考资料来源:百度百科--特征值

温馨提示:答案为网友推荐,仅供参考
第1个回答  2016-06-24
Ax=px,满足上述方程的p为特征值,对应的x为特征向量。遗项后得到(A-p I)x=Bx=0,其中 I 为单位矩阵。满足上述方程的p,也就是矩阵A的特征值,会使得矩阵B的行列式为0。根据线性代数的理论,对于方程Bx=0,当矩阵B的行列式为0时,x有无穷多组非零解。
另外,对于方程Bx=0,若x是该方程的非零解,即x是特征向量,因为B(kx)=k(Bx)=0,则kx也是该方程的解,即kx也是特征向量,k只要是非零常数即可。因此,任何一个特征值对应无数个特征向量
第2个回答  2016-06-17
因为对相应的是一个或几个向量组,而且只要成比例的都是特征向量,可以是无数个。
第3个回答  推荐于2017-11-25
特征向量的原始定义Ax=λx,λx是方阵A对向量x进行变换后的结果,而且x是特征向量的话,k
x也是特征向量(k是常数且不为零),所以所谓的特征向量不是一个向量而是一个向量族本回答被网友采纳
第4个回答  2016-06-10
请你找一本线性代数课本(数学专业用),其中有一个
定理:对于矩阵A的特征值λ.代数重数≥几何重数.
(代数重数是特征值λ作为特征方程的根的重数.
几何重数是特征值λ所对应的特征子空间的维数.即
λ对应的线性无关的特征向量的个数.)
这个定理的证明不太麻烦.但是这里还是写不出.
顺便说一句,A相似于对角阵的充要条件正是:
对于A的每个特征值,总有:代数重数=几何重数.
对称矩阵必相似于对角阵,总有:代数重数=几何重数
相似回答