第1个回答 2011-01-07
【备注:应为则|x1-x2|的最“大”值为( )?】
f(x)=2sin(π/2 x+π/5),
当2kπ-π/2 ≤ π/2 x+π/5 ≤ 2kπ+π/2,即 4k-7/5 ≤ x+2/5 ≤ 4k+3/5 其中k∈Z时单调增
对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,
相当于区间(x1,x2)在单调增区间
x1≥4k-7/5,x2≤4k+3/5
|x1-x2|=x2-x1 ≤ 3/5-(-7/5)=2
|x1-x2|的最大值为2
选C本回答被网友采纳
第2个回答 2011-01-07
答:要想“满足对任意x∈R都有f(x1)≤f(x)≤f(x2)成立”那么|x1-x2|之间至少包含一个最大值点和最小值点,那么最小值恰为半个周期,一个周期为4,半个是2.选c
第3个回答 2011-01-08
由题意:f(x1)是f(x)的最小值,f(x2)是它的最大值,根据图象可知|x1-x2|恰好是半个周期。所以最小值是2,选C