熔融插层法制备高岭土-聚合物插层复合物

如题所述

熔融插层法制备的插层复合物尽管插层不很均匀,但具有容易控制聚合物的聚合度(分子量),反应速率快,工业上容易实现等优点,得到了广泛的研究。蒙脱石-聚合物复合纳米材料研究比较多,目前已制备出多种类型复合物,其中有一些种类的纳米塑料已实现工业化生产。而对高岭土-聚合物材料的研究近几年才刚刚开始,对其研究很少。本次工作探讨了熔融法制备高岭土-聚乙二醇20000(Kao-PEG)的最佳反应时间,并首次综合运用X射线衍射、红外光谱、扫描电镜、透射电镜、热分析等对复合物进行表征,细致观察了复合物的形貌,并研究其插层前后的结构变化和热稳定性,加深了对该聚合物复合材料的科学认识,有益于今后对其予以开发应用。

一、实验用主要原料

高岭土:萍乡硬质高岭土,≤200目。无水乙醇:分析纯,含量≥99.7%。二甲基亚砜(DMSO):分析纯,含量≥99.0%。聚乙二醇-20000(PEG-20000):平均分子量19000,分析纯。丙酮:分析纯,含量99.5%。

二、Kao-PEG的制备

高岭土-聚乙二醇的制备分为2个步骤:高岭土-二甲基亚砜(Kao-DMSO)的制备和高岭土-聚乙二醇(Kao-PEG)的制备。

Kao-DMSO的制备:将10g高岭土悬浮于100mLDMSO和9mL蒸馏水的混合液中,将混合物装入三颈瓶内,放置于恒温磁力搅拌仪上,冷凝回流,在一定温度下磁力搅拌反应一定时间后,离心沉降分离;将固体物用无水乙醇洗涤除去复合物外表面多余的DMSO,50℃下烘干8h,得到白色粉末状样品。

Kao-PEG的制备:将0.5g Kao-DMSO与1.5g聚乙二醇(PEG-20000)混合,研磨10min,使混合均匀,置于坩埚内,在烘箱中160℃下熔融反应6h、12h、24h、48h、96h后取出,降至室温,用丙酮漂洗干净,风干后样品备测试用。

三、结果与讨论

1.高岭土-聚乙二醇插层复合物XRD分析

高岭石原样的d001值为0.717nm,用DMSO插层后d001值由0.717nm增至1.124nm,插层率90.17%。经聚乙二醇置换插层制备的Kao-DMSO复合物中,高岭石的d001值由0.717nm膨胀到1.121~1.125nm。因此,可以用插层率和置换插层率来表征插层程度。

不同时间熔融法制备高岭土-聚乙二醇(Kao-PEG)的XRD图谱及插层率见图4-28。可见熔融法的插层速率较快,反应12h插层率即趋向一稳定值80%左右;反应24h插层率达最大值;继续延长插层时间,插层率不是增高,反而有微弱程度的降低。从XRD图上还可以看出,插层时间太短,则反应不完全,如插层6h制备的复合物有分叉的衍射峰(d=1.019nm)存在,说明还处于预插层体复合物分子与插层分子的交换取代阶段。而反应12h以后则没有分叉的衍射峰,可以认为插层12h为最佳反应时间。Kao-PEG的d001峰尖锐且强度高,层间距比高岭土原样仅增加0.4nm左右,而PEG高分子链的横向截面高度也大约为0.30nm[8],表明PEG分子在高岭石层间为高度有序单层排列。

图4-28 高岭土、PEG、Kao-DMSO和不同反应时间Kao-PEGX射线衍射图谱

(a)高岭土;(b)PEG;(c)Kao-DMSO;(d)反应6h;(e)反应12h;(f)反应24h;(g)反应48h;(h)反应96h

因为Kao-PEG的d001值(1.121~1.125nm)同Kao-DMSO的d001值(1.124nm)非常相近,在XRD图谱上难以区分,为证明DMSO分子确实已被PEG置换,对反应物用水进行漂洗。若是Kao-DMSO,水漂洗后脱嵌,复合物的1.124nm恢复至高岭石的0.717nm左右;若为Kao-PEG,水洗后的d001值基本不变。经PEG插层反应48h后制备的Kao-PEG水洗后的XRD图(图4-29b)表明,水洗后的d001值仍为1.124nm,可见DMSO分子已被PEG分子置换。从Kao-PEG插层复合物的XRD图上还可看到,样品中有聚乙二醇的特征衍射峰存在(图4-28),在反应时间较短的复合物中聚乙二醇的衍射峰强度大,残留的包覆在高岭石表面的聚乙二醇较多,这与电镜照片相互佐证。

图4-29 反应48hKao-PEG及水洗后样品的XRD图谱

(a)Kao-PEG;(b)Kao-PEG水洗后样品

2.高岭土-聚乙二醇插层复合物FTIR分析

高岭土、Kao-DMSO、Kao-PEG、PEG等样品高波数区(羟基振动区)的红外光谱见(图4-30)。高岭石羟键特征振动峰为3694cm-1、3667cm-1、3647cm-1、3620cm-1(图4-30a),前3个振动峰归属于高岭石的内表面羟基,一般认为这些羟基的伸展方向与(001)面呈60°~73°夹角;后者归属于内羟基。内羟基位于片层内部远离插层客体分子,因此3620cm-1振动峰一般受插层影响微弱。而内表面羟基位于片层表面容易受到插层的影响,插层前后其振动峰变化较大。

图4-30 高岭石、Kao-DMSO、Kao-PEG、PEG高波数区的红外光谱

(a)高岭石;(b)Kao-DMSO;(c)Kao-PEG;(d)PEG

在Kao-DMSO的红外振动图谱(图4-30b)中,内表面羟基振动峰的位置(3695cm-1、3664cm-1)和强度与高岭土原样相比均有明显变化,强度降低,而内羟基振动峰(3622cm-1)的强度和位置则基本保持不变。另外在3022cm-1、2936cm-1处形成2个CH3振动峰,表明DMSO分子插入到高岭石层间并与内表面羟基形成了氢键。

而Kao-PEG的图谱(图4-30c)与高岭石或Kao-DMSO有着显著的差别,当PEG分子插入高岭石层间后,内表面羟基3694cm-1振动峰与高岭石相比强度明显减弱,与Kao-DMSO则基本类似;缺少3667cm-1、3647cm-1处的振动峰,新增加3652cm-1振动峰;内羟基振动峰(3623cm-1)位置与强度基本不变;归属于DMSO中的CH3振动峰(3022cm-1、2936cm-1)在Kao-PEG中难以辨别其存在,而属于PEG(图4-30d)的CH3振动峰(2888cm-1)则明显存在于Kao-PEG中(2887cm-1)。显然,PEG分子已替代DMSO插入到高岭石层间与内表面羟基形成了氢键。Kao-PEG中的3451cm-1归属于δ(HOH)振动峰。

不同样品的低波数区红外光谱见(图4-31),DMSO分子的S=O振动峰(1043cm-1)与CH3的振动峰(1310cm-1、1433cm-1)在Kao-DMSO中均有相应表现(1036cm-1、1319cm-1、1432cm-1),而在Kao-PEG中难以辨别其踪迹,表明经置换插层后DMSO被PEG完全置换,基本上无残留。这与高波数区红外光谱分析结果一致。Kao-PEG中的1634cm-1也归属于δ(HOH)振动峰,进一步说明Kao-PEG中存在有吸附水或插层水分子。在C—H振动带变化范围(1500~1200cm-1)内,Kao-PEG中有许多振动带与PEG相似,无明显变化,说明有吸附的PEG分子存在;增加的一些新的振动峰为插层PEG分子的振动所引起。

图4-31 高岭石、Kao-DMSO、Kao-PEG、PEG低波数区的红外光谱

(a)高岭石;(b)Kao-DMSO;(c)Kao-PEG;(d)PEG

以上分析表明,PEG通过置换Kao-DMSO中的DMSO而插入高岭石层间,形成Kao-PEG插层纳米复合物,并且吸附有少量的水分子和PEG分子。

3.高岭土-聚乙二醇插层复合物电镜分析

高岭土原样总体上为片状堆积体,板片平直,厚度较大,粉碎后的颗粒呈板状、板柱状、等粒状、似球状等,大小不一(图4-32a)。经二甲基亚砜插层后,形貌变化不太大,高岭石的板片仍清晰可见,但片层端面处的棱角钝化,层厚度减小,有别于高岭土原样(图4-32b)。聚乙二醇原样多为粒径在0.2~1mm的片状块体(图4-32c),片层可扭曲并在层片间形成空洞(图4-32d)。高岭石经聚乙二醇插层后的扫描电镜照片见(图4-32e、4-32f)。由图可见,高岭土-聚乙二醇的形貌与高岭土原样、聚乙二醇原样或高岭土-二甲基亚砜插层复合物(Kao/DMSO)有着本质的差别。用聚乙二醇插层后,高岭石片层被撑开,成径厚比非常大的二维结构,单层厚达到纳米级(50~100nm),层间孔隙增大。由于PEG20000为分子量极大的长链分子,Kao-PEG中高岭石片层的表面被或多或少的聚乙二醇(PEG)分子包覆,颗粒之间相互粘连成为较大的颗粒。当高岭石表面包覆有比较多的PEG分子时,其形貌非常奇特,高岭石片层表面的PEG分子以插层后的薄板状高岭石片层为骨架并将其片层相互连接,因此,以高岭石为骨架形成大小不等形状各异的许多孔洞(图4-32e)。当高岭石表面包覆较少的PEG分子时,Kao-PEG复合物中主要为插层高岭石板片堆积体,高岭石的板片平直,形貌清晰可见,但高岭石仍然被PEG分子连接为大的颗粒(图4-32f)。

经反应96h的高岭土-聚乙二醇复合物的透射电镜照片(图4-33a、4-33b)表明,高岭石在复合物中主要呈极薄的板片状,说明聚合物插层后,有相当一部分高岭石已剥离为层厚在纳米级的薄片。由于复合物的这种结构,显然具有纳米级的薄层和高的比表面积,使得Kao-PEG插层复合物在吸附剂、催化剂载体等方面具有潜在的应用前景。

图4-32 不同样品的扫描电镜照片

(a)kaolinite;(b)Kao-DMSO;(c)(d)PEG;(e)Kao-PEG(12h);(f)Kao-PEG(96h)

图4-33 Kao-PEG(96h)的透射电镜照片

4.高岭土-聚乙二醇插层复合物热稳定性

Kao-PEG的加热过程比较复杂,按热失重曲线特征(图4-34)大约可分为3个阶段:0~170℃为缓慢失重阶段,曲线平缓,失重3%;170~600℃为强烈失重阶段,曲线陡峭下降,失重51%;600~1200℃为微弱失重阶段,曲线近于水平,失重4%左右。

3个阶段有不同的差热特征,第一阶段差热曲线上的68℃吸热峰归属于聚乙二醇的熔化吸热,该阶段的失重为表面吸附物的加热挥发。第二阶段最为复杂,177℃吸热峰归属于聚乙二醇的熔化与挥发;紧接其后180~344℃之间的强放热峰为有机物的燃烧,复合物大量失重伴随着强烈放热,并与400~600℃之间高岭石脱羟基吸热变化过程相重叠,致使曲线复杂化。第三阶段,差热曲线和热失重曲线均表现出缓慢变化,在600~800℃为高岭石少量脱羟基阶段,1005℃为偏高岭石晶相转变的放热反应,放热峰微弱不明显,而且,1060℃以下仍持续有少量失重,这是由于有机物脱嵌时高岭石因脱羟基片层坍塌致使部分有机物陷在片层中间,片层间有机物的存在阻碍偏高岭石转变为莫来石等的反应,导致反应进行较慢,因而随着晶格重排有机物缓慢释放。从以上分析可知,Kao-PEG复合物在低于170℃仅有聚乙二醇的熔化和少量水的挥发,因此,Kao-PEG复合物在低于170℃下稳定。

图4-34 高岭土-聚乙二醇插层复合物的热重-差热分析

温馨提示:答案为网友推荐,仅供参考
相似回答