计算机体系结构的技术革新

如题所述

第1个回答  2016-05-12

计算机体系结构以图灵机理论为基础,属于冯·诺依曼体系结构。本质上,图灵机理论和冯·诺依曼体系结构是一维串行的,而多核处理器则属于分布式离散的并行结构,需要解决二者的不匹配问题。
首先,串行的图灵机模型和物理上分布实现的多核处理器的匹配问题。图灵机模型意味着串行的编程模型。串行程序很难利用物理上分布实现的多个处理器核获得性能加速.与此同时,并行编程模型并没有获得很好的推广,仅仅局限在科学计算等有限的领域.研究者应该寻求合适的机制来实现串行的图灵机模型和物理上分布实现的多核处理器的匹配问题或缩小二者之间的差距,解决“并行程序编程困难,串行程序加速小”的问题。
在支持多线程并行应用方面,未来多核处理器应该从如下两个方向加以考虑。第一是引入新的能够更好的能够表示并行性的编程模型。由于新的编程模型支持编程者明确表示程序的并行性,因此可以极大的提升性能。比如Cell处理器提供不同的编程模型用于支持不同的应用。其难点在于如何有效推广该编程模型以及如何解决兼容性的问题。第二类方向是提供更好的硬件支持以减少并行编程的复杂性。并行程序往往需要利用锁机制实现对临界资源的同步、互斥操作,编程者必须慎重确定加锁的位置,因为保守的加锁策略限制了程序的性能,而精确的加锁策略大大增加了编程的复杂度。一些研究在此方面做了有效的探索。比如,SpeculativeLockElision机制允许在没有冲突的情况下忽略程序执行的锁操作,因而在降低编程复杂度的同时兼顾了并行程序执行的性能。这样的机制使得编程者集中精力考虑程序的正确性问题,而无须过多地考虑程序的执行性能。更激进的,TransactionalCoherenceandConsistency(TCC)机制以多个访存操作(Transaction)为单位考虑数据一致性问题,进一步简化了并行编程的复杂度。
主流的商业多核处理器主要针对并行应用,如何利用多核加速串行程序仍然是一个值得关注的问题。其关键技术在于利用软件或硬件自动地从串新程序中派生出能够在多核处理器上并行执行的代码或线程。多核加速串行程序主要有三种方法,包括并行编译器、推测多线程以及基于线程的预取机制等。在传统并行编译中,编译器需要花费很大的精力来保证拟划分线程之间不存在数据依赖关系。编译时存在大量模糊依赖,尤其是在允许使用指针(如C程序)的情况下,编译器不得不采用保守策略来保证程序执行的正确性。这大大限制了串行程序可以挖掘的并发程度,也决定了并行编译器只能在狭窄范围使用。为解决这些问题,人们提出推测多线程以及基于线程的预取机制等。然而,从这种概念提出到现在为止,这个方向的研究大部分局限于学术界,仅有个别商业化处理器应用了这种技术,并且仅仅局限于特殊的应用领域。我们认为动态优化技术和推测多线程(包括基于线程的预取机制)的结合是未来的可能发展趋势。
冯·诺依曼体系结构的一维地址空间和多核处理器的多维访存层次的匹配问题。本质上,冯·诺依曼体系结构采用了一维地址空间。由于不均匀的数据访问延迟和同一数据在多个处理器核上的不同拷贝导致了数据一致性问题。该领域的研究分为两大类:一类研究主要是引入新的访存层次。新的访存层次可能采用一维分布式实现方式。典型的例子是增加分布式统一编址的寄存器网络。全局统一编址的特性避免了数据一致性地考虑。同时,相比于传统的大容量cache访问,寄存器又能提供更快的访问速度。TRIPS和RAW都有实现了类似得寄存器网络。另外,新的访存层次也可以是私有的形式。比如每个处理器和都有自己私有的访存空间。其好处是更好的划分了数据存储空间,已洗局部私有数据没有必要考虑数据一致性问题。比如Cell处理器为每个SPE核设置了私有的数据缓冲区。另一类研究主要涉及研制新的cache一致性协议。其重要趋势是放松正确性和性能的关系。比如推测Cache协议在数据一致性未得到确认之前就推测执行相关指令,从而减少了长迟访存操作对流水线的影响。此外,TokenCoherence和TCC也采用了类似的思想。程序的多样性和单一的体系结构的匹配问题。未来的应用展现出多样性的特点。一方面,处理器的评估不仅仅局限于性能,也包括可靠性,安全性等其他指标。另一方面,即便考虑仅仅追求性能的提高,不同的应用程序也蕴含了不同层次的并行性。应用的多样性驱使未来的处理器具有可配置、灵活的体系结构。TRIPS在这方面作了富有成效的探索,比如其处理器核和片上存储系统均有可配置的能力,从而使得TRIPS能够同时挖掘指令级并行性、数据级并行性及指令级并行性。
多核和Cell等新型处理结构的出现不仅是处理器架构历史上具有里程碑式的事件,对传统以来的计算模式和计算机体系架构也是一种颠覆
2005年,一系列具有深远影响的计算机体系结构被曝光,有可能为未来十年的计算机体系结构奠定根本性的基础,至少为处理器乃至整个计算机体系结构做出了象征性指引。随着计算密度的提高,处理器和计算机性能的衡量标准和方式在发生变化,从应用的角度讲,讲究移动和偏向性能两者已经找到了最令人满意的结合点,并且有可能引爆手持设备的急剧膨胀。尽管现在手持设备也相对普及,在计算能力、可扩展性以及能耗上,完全起到了一台手持设备应该具备的作用;另一方面,讲究性能的服务器端和桌面端,开始考虑减少电力消耗赶上节约型社会的大潮流。
Cell本身适应这种变化,同样也是它自己创造了这种变化。因而从它开始就强调了不一样的设计风格,除了能够很好地进行多倍扩展外,处理器内部的SPU(SynergisticProcessorUnit协同处理单元)具有很好的扩展性,因而可以同时面对通用和专用的处理,实现处理资源的灵活重构。也就意味着,通过适当的软件控制,Cell能应付多种类型的处理任务,同时还能够精简设计的复杂。

相似回答