满足什么条件才能使用三重积分的轮换对称性?

如题所述

坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x、y、z也同样作变化后,积分值保持不变。

正如单参数的正函数的定积分代表函数图像和x轴之间区域的面积一样,正的双变量函数的三重积分代表函数所定义的曲面和包含函数定义域的平面之间所夹的区域的体积。

同样的体积也可以通过三变量常函数f(x、y、z) = 1在上述曲面和平面之间的区域中的三重积分得到。若有更多变量,则多维函数的多重积分给出超体积。

扩展资料

三重积分计算方法

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法

1、先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

①区域条件:对积分区域Ω无限制;

②函数条件:对f(x,y,z)无限制。

2、先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

②函数条件:f(x,y)仅为一个变量的函数。

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-11-22
坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。

特点及规律
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0, 也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换。
(2) 对于第二类曲面积分只是将dxdy也同时变换即可 ,比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy。
(3) 将(1)中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 。第二类三维空间的曲线积分跟(2)总结相同同。但第二类平面上的曲线积分不同∫f(x,y)dx=-∫∫f(y,x)dy.(注意前面多了一个负号)
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分区间没有发生变化,则被积函数作相应变换后,积分值不变。追答

举个例子

积分区域是轮换对称的,也就是x,y,z互换,区域不变。 如:球体区域:x^2+y^2+z^2=1

这里xyz是等价的,彼此可以互换

?还有什么疑问吗?

本回答被网友采纳
第2个回答  2021-02-17

相似回答