波尔兹曼常数数值为:1.38064852(79)×10−23J|K−1,单位为J|K−1。玻尔兹曼常数(英语:Boltzmann constant)是有关于温度及能量的一个物理常数,以纪念奥地利物理学家路德维希·玻尔兹曼在统计力学领域做出的重大贡献。
拓展资料:
路德维希·爱德华·玻尔兹曼(德语:Ludwig Eduard Boltzmann ,1844年2月20日-1906年9月5日)是一位奥地利物理学家和哲学家。作为一名物理学家,他最伟大的功绩是发展了通过原子的性质(例如,原子量,电荷量,结构等等)来解释和预测物质的物理性质(例如,粘性,热传导,扩散等等)的统计力学,并且从统计概念出发,完美地阐释了热力学第二定律。
玻尔兹曼常量系热力学的一个基本常量,记为"K",数值为:K=1.3806505(24) × 10^(-23) J/K,玻尔兹曼常量可以推导得到:理想气体常数R等于玻尔兹曼常数乘以阿伏伽德罗常数(即R=K·NA)。
除碰撞瞬间外,分子间的相互作用力可忽略不计,重力的影响也可忽略不计。因此在相邻两次碰撞之间,分子做匀速直线运动。单个分子在一次碰撞中对器壁上单位面积的冲量。
温度完全由气体分子运动的平均平动动能决定。也就是说,宏观测量的温度完全和微观的分子运动的平均平动动能相对应,或者说,大量分子的平均平动动能的统计表现就是温度(如果只考虑分子的平动的话)。从上面的公式,我们还可以看到,如果已知气体的温度,就可以反过来求出处在这个温度下的分子的平动速度的平方的平均值,这个平均值开方就得到所谓方均根速率。
本回答被网友采纳