设f(x)∈C[0,1],证明∫(π,0)*x*f(sinx)dx =π/2*∫(π,0)*f(sinx)dx

如题所述

设x = π - y,dx = - dy
当x = 0,y = π
当x = π,y = 0
∫(0→π) xf(sinx) dx = - ∫(π→0) (π - y)f(sin(π - y)) dy
= π∫(0→π) f(siny) dy - ∫(0→π) yf(siny) dy
= π∫(0→π) f(sinx) dx - ∫(0→π) xf(sinx) dx,这里的y是假变量
2∫(0→π) xf(sinx) dx = π∫(0→π) f(sinx) dx,重复,移项
∴∫(0→π) xf(sinx) dx = (π/2)∫(0→π) f(sinx) dx
温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-06-13
令x=π-t,代入得:
,∫(0,π)*x*f(sinx)dx =∫(π,0)*(π-t)f(sin(π-t)d(π-t)
=∫(0,π) πf(sint)dt-∫(0,π) tf(sint)dt
=∫(0,π) πf(sinx)dx-∫(0,π) xf(sinx)dx (利用积分与变量无关)
移项合并除以2得:∫(0,π) xf(sinx)dx=π/2*∫(0,π) f(sinx)dx
相似回答