xdx等于 2x³/3dx的平方。
解:因为(x^a)'=ax^(a-1),那么当a=2时,即(x^2)'=2x。
又由于导数和积分互为逆运算,那么可得∫2xdx=x^2。
那么∫xdx=1/2*∫2xdx=1/2*x^2。
即∫xdx等于1/2*x^2+C。
导数
是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。