函数知识点精讲,,,,,,,

如题所述

简介
首先要理解,函数是发生在非空数集之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止一个。最后,要重点理解函数的三要素。

函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图象,表格及其他形式表示。
概念
在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。
映射定义
设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:A→B。其中,b称为a在映射f下的象,记作:b=f(a); a称为b关于映射f的原象。集合A中所有元素的象的集合记作f(A)。
则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特殊的象)
几何含义
函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图象与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
集合论
如果X到Y的二元关系f:X×Y,对于每个x∈X,都有唯一的y∈Y,使得<x,y>∈f,则称f为X到Y的函数,记做:f:X→Y。
当X=X1×…×Xn时,称f为n元函数。
其特点:
值域和定义域重合
单值性:取区间任意两变量x1,x2,且x1<x2,如果对应的y1<y2,则函数在此区间单调递增,反之,单调递减
元素
输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。
计算机科学中,参数和返回值的数据类型分别确定了子程序的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关。
分类
单射函数,将不同的变量映射到不同的值。即:若x1和x2∈X,则仅当x1≠x2时有f(x1)≠ f(x2)。

单射满射 双射
满射函数,其值域即为其对映域。即:对映射f的对映域中之任意y,都存在至少一个x满足


双射函数,既是单射的又是满射的。也叫一一对应。双射函数经常被用于表明集合X和Y是等势的,即有一样的基数。如果在两个集合之间可以建立一个一一对应,则说这两个集合等势。
象和原象
元素x∈X在f的象就是f(x),他们所取的式值为0。
图象
函数f的图象是平面上点对(x,f(x))的集合,其中x取定义域上所有成员的。函数图象可以帮助理解证明一些定理。
如果X和Y都是连续的线,则函数的图象有很直观表示注意两个集合X和Y的二元关系有两个定义:一是三元组(X,Y,G),其中G是关系的图;二是索性以关系的图定义。用第二个定义则函数f等于其图象。
例如:

当k>0时,直线为升,过一三象限或向上平移,向下平移象限;
当k<0时,直线为降,过二四象限,向上或向下平移象限。
定义域
若函数y=f(u)的定义域是B﹐函数u=g(x)的定义域是A﹐则复合函数y=f[g(x)]的定义域是
D={x|x∈A,且g(x)∈B}
3性质
有界性
设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|<=M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。
函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。
单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。
奇偶性
设f(x)为一个实变量实值函数,则f为奇函数若下列的方程对所有实数x都成立:
f( -x) =- f(x) 几何上,一个奇函数与原点对称,亦即其图在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,则f为偶函数若下列的方程对所有实数x都成立:
f(x) =f( -x) 几何上,一个偶函数会对y轴对称,亦即其图在对y轴为镜射后不会改变。
偶函数的例子有|x|、x^2、cos(x)和cosh(sec)(x)。
偶函数不可能是个双射映射。
周期性

狄利克雷函数
设函数f(x)的定义域为D。如果存在一个正数T,使得对于任一x∈D有(x士T)∈D,且f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。周期函数的定义域 D 为至少一边的无界区间,若D为有界的,则该函数不具周期性。
并非每个周期函数都有最小正周期,例如狄利克雷(Dirichlet)函数。
连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
设f是一个从实数集的子集射到 的函数:。f在中的某个点c处是连续的当且仅当以下的两个条件满足:
f在点c上有定义。c是中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。
不用极限的概念,也可以用下面所谓的 方法来定义实值函数的连续性。
仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:
对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的,只要x满足c - δ< x < c + δ,就有成立。
凹凸性
设函数f(x)在I上连续。如果对于I上的两点x1≠x2,恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2,(f((x1+x2)/2)<(f(x1)+f(x2))/2)那么称f(x)是区间I上的(严格)凸函数;如果恒有f((x1+x2)/2)≥(f(x1)+f(x2))/2,(f((x1+x2)/2)>(f(x1)+f(x2))/2)那么称f(x)是区间上的(严格)凹函数。
实函数或虚函数
实函数(Real function),指定义域和值域均为实数域的函数。实函数的特性之一是可以在坐标上画出图形。
虚函数是面向对象程序设计中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。
增减性
依y=f(x),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”
判断复合函数的单调性的步骤如下:(1)求复合函数定义域;(2)将复合函数分解为若干
个常见函数(一次、二次、幂、指、对函数);(3)判断每个常见函数的单调性;(4)将中间
变量的取值范围转化为自变量的取值范围;(5)求出复合函数的单调性。
例如:讨论函数y=0.8^(x²-4x+3)的单调性。
解:函数定义域为R。
令u=x²-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,
u=x²-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,
∴函数y=0.8^(x²-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。
利用复合函数求参数取值范围
求参数的取值范围是一类重要问题,解题关键是建立关于这
个参数的不等式组,必须
将已知的所有条件加以转化。
周期性
设y=f(x),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)
周期函数性质:
(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1、T2∈Q(Q是有理数集)
(6)若T1、T2是f(x)的两个周期,且 T *是无理数,则f(x)不存在最小正周期。
(7)周期函数f(x)的定义域M必定是双方无界的集合。
4发展史
早期概念
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
十八世纪
1718年约翰·柏努利(Johann Bernoulli ,瑞士,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。 1748年,柏努利的学生欧拉在《无穷分析引论》一书中说:“一个变量的函数是由该变量的一些数或常量与任何一种方式构成的解析表达式。
1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”
18世纪中叶欧拉(L.Euler,瑞士,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。
十九世纪
1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。
1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。
1837年狄利克雷(Dirichlet,德国,1805-1859) 突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。
等到康托(Cantor,德国,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。
现代概念
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。
1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”
5一次函数

在某一个变化过程中,设有两个变量x和y,如果可以写成

(k为一次项系数,k≠0,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。特别的,当

时,称y是x的正比例函数。
基本定义
一般地,形如y=kx+b(k≠0,b是常数),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,即正比例函数(自变量和因变量成正比例)所以说正比例函数是一种特殊的一次函数。
还有,若自变量最高次数为1,则这个函数就是一次函数。
在某一个变化过程中,设有两个变量x和y,如果可以写成y=f(x),(即x经过某种运算得到y),即每一个x都有唯一一个y与之对应,那么我们就说y是x的函数,其中x是自变量,y随X的变化而变化。当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是函数。
表示法
函数常用的表示方法:解析法、图像法、列表法。
基本性质
本目录涉及专业领域知识,部分内容存在争议,已由兰州大学物理学博士 孔维杰核实查证。
  查证内容已提供参考资料,点击查看详情。
1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。
2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。
3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
当k1,k2正负相同时,二次函数开口向上;
当k1,k2正负相反时,二次函数开口向下。
二次函数与y轴交点为(0,b2b1)。
6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。
图像

(1)列表:表中给出一些自变量的值及其对应的函数值。
(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
(3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。
注:此处由孔维杰对词条进行了专业判断。
特殊位置关系
当平面直角坐
标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的
一次函数和方程
1、从形式上看:一次函数y=kx+b, 一元一次方程ax+b=0 。
2、从内容上看:一次函数表示的是一对(x,y)之间的关系,它有无数对解;一元一次方程表示的是未知数x
的值,最多只有1个值 。
3、相互关系:一次函数与x轴交点的横坐标就是相应的一元一次方程的根。 例如:y=4x+8与x轴的交点是
(-2,0)、则一元一次方程4x+8=0的根是x=-2。
函数和不等式
解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
对应一次函数y=kx+b,它与x轴交点为(-b/k,0)。
当k>0时,不等式kx+b>0的解为:x>- b/k,不等式kx+b<0的解为:x<- b/k;
当k<0的解为:不等式kx+b>0的解为:x<- b/k,不等式kx+b<0的解为:x>- b/k。
两者关系:
1.(1)以二元一次方程组ax+by=c的解为坐标的点组成的图像与一次函数
y=-a/bx+c/b的图像相同.
(2)二元一次方程组{a1x+b1y=c1,
a2x+b2y=c2的解可以看作是两个一次函数
y=-a1/b1x+c1/d1和y=-a2/b2x+c2/d2的图像的交点.
方法小结:
把方程组中的两个二元一次方程改写成一次函数的形式,然后作出它们的图像,找出两图像的交点,即可知方程组的解。
区别和联系
区别:二元一次方程有两个未知数,而一次函数只是说未知数的次数为一次,并未限定几个变量,因此二元一次方程只是一次函数中的一种。
联系:(1)在平面直角坐标系中分别描绘出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上。如方程2x+y=5有无数组解,像x=1,y=3;x=2,y=1;…以这些解为坐标的点(1,3)(2,1)…都在一次函数y=-2x+5的图象上. (2)在一次函数图象上任取一点,它的坐标都适合相应的二元一次方程.如在一次函数y=-x+2的图象上任取一点(-3,3),则x=-3,y=3一定是二元一次方程x+y=2的一组解.
所以,以二元一次方程的解为坐标的所有点组成的图象与相应的一次函数的图象是相同的。
一、有交点:在同一平面直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解。反过来,以二元一次方程组的解为坐标的点,一定是相应的两个一次函数的图象的交点。
二、无交点:当二元一次方程组无解时,相应的两个一次函数在平面直角坐标系中的图象就没有交点,即两个一次函数图象平行。反过来,当两个一次函数图象平行时,相应的二元一次方程组就无解。如二元一次方程组3x-y=5,3x-y=-1无解,则一次函数y=3x-5与y=3x+1的图象平行,反之也成立。
三、作图法解方程:用作图的方法解二元一次方程组,一般有下列几个步骤:(1)将相应的二元一次方程改写成一次函数的解析式;(2)在同一平面直角坐标系内作出这两个一次函数的图象;(3)找出图象的交点坐标,即得二元一次方程组的解。
四、方程组确定解析式:在实际应用中,常常利用待定系数法构造二元一次方程组,从而确定一次函数的解析式。
例:某航空公司规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(kg)的一次函数。现知王芳带了30 kg的行李,买了50元行李票。李刚带了40kg的行李,买了100元行李票。那么,乘客最多可免费携带多少千克的行李?
解答:依题意,可设一次函数的解析式为y=kx+b。则可得二元一次方程组50=30k+b,100=40k+b。解得k=5,b=-100,即一次函数的解析式是y=5x-100。当x=20时,y=0。所以乘客最多可免费携带20 kg的行李。
五、 待定系数法:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;
(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;
(3)解方程或方程组,求出待定系数的值,进而写出函数解析式。
注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要
两组x,y的值。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-09-30
一般地,给定非空数集A,B,按照某个对应法则f,使得A中任一元素x,都有B中唯一确定的y与之对应,那么从集合A到集合B的这个对应,叫做从集合A到集合B的一个函数。

记作:x→y=f(x),x∈A.集合A叫做函数的定义域,记为D,集合{y∣y=f(x),x∈A}叫做值域,记为C。定义域,值域,对应法则称为函数的三要素。一般书写为y=f(x),x∈D.若省略定义域,则指使函数有意义的集合。映射

一般地,给定非空数集A,B,从集合A到集合B的一个映射,叫做从集合A到集合B的一个函数。
向量函数:
自变量是向量的函数叫向量函数

对应、映射、函数三者的重要关系:
函数是数集上的映射,映射是特指的对应。即:函数包含于映射包含于对应
编程

函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。
类似过程,不过函数一般都有一个返回值。它们都可在自己结构里面调用自己,称为递归。
大多数编程语言构建函数的方法里都含有Function关键字(或称保留字)。在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。
映射定义

设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:A→B。其中,b称为a在映射f下的象,记作:b=f(a); a称为b关于映射f的原象。集合A中所有元素的象的集合记作f(A)。
则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特殊的象)
几何含义

函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图象与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
集合论

如果X到Y的二元关系f:X×Y,对于每个x∈X,都有唯一的y∈Y,使得<x,y>∈f,则称f为X到Y的函数,记做:f:X→Y。
当X=X1×…×Xn时,称f为n元函数。
其特点:
值域和定义域重合
单值性:取区间任意两变量x1,x2,且x1<x2,如果对应的y1<y2,则函数在此区间单调递增,反之,单调递减
元素

输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。
计算机科学中,参数和返回值的数据类型分别确定了子程序的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关。
分类

单射函数,将不同的变量映射到不同的值。即:若x1和x2∈X,则仅当x1≠x2时有f(x1)≠ f(x2)。

单射满射 双射
满射函数,其值域即为其对映域。即:对映射f的对映域中之任意y,都存在至少一个x满足。
双射函数,既是单射的又是满射的。也叫一一对应。双射函数经常被用于表明集合X和Y是等势的,即有一样的基数。如果在两个集合之间可以建立一个一一对应,则说这两个集合等势。
象和原象

元素x∈X在f的象就是f(x),他们所取的式值为0。
图象

函数f的图象是平面上点对(x,f(x))的集合,其中x取定义域上所有成员的。函数图象可以帮助理解证明一些定理。
如果X和Y都是连续的线,则函数的图象有很直观表示注意两个集合X和Y的二元关系有两个定义:一是三元组(X,Y,G),其中G是关系的图;二是索性以关系的图定义。用第二个定义则函数f等于其图象。
例如:
当k>0时,直线为升,过一三象限或向上平移,向下平移象限;
当k<0时,直线为降,过二四象限,向上或向下平移象限。
定义域

若函数y=f(u)的定义域是B﹐函数u=g(x)的定义域是A﹐则复合函数y=f[g(x)]的定义域是
D={x|x∈A,且g(x)∈B}
3性质

有界性

设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|<=M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。
函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。
单调性

设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。
奇偶性

设f(x)为一个实变量实值函数,则f为奇函数若下列的方程对所有实数x都成立:
f( -x) =- f(x) 几何上,一个奇函数与原点对称,亦即其图在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,则f为偶函数若下列的方程对所有实数x都成立:
f(x) =f( -x) 几何上,一个偶函数会对y轴对称,亦即其图在对y轴为镜射后不会改变。
偶函数的例子有|x|、x^2、cos(x)和cosh(sec)(x)。
偶函数不可能是个双射映射。
周期性

狄利克雷函数
设函数f(x)的定义域为D。如果存在一个正数T,使得对于任一x∈D有(x士T)∈D,且f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。周期函数的定义域 D 为至少一边的无界区间,若D为有界的,则该函数不具周期性。
并非每个周期函数都有最小正周期,例如狄利克雷(Dirichlet)函数。
连续性

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
设f是一个从实数集的子集射到 的函数:。f在中的某个点c处是连续的当且仅当以下的两个条件满足:
f在点c上有定义。c是中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。
不用极限的概念,也可以用下面所谓的 方法来定义实值函数的连续性。
仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:
对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的,只要x满足c - δ< x < c + δ,就有成立。
凹凸性

设函数f(x)在I上连续。如果对于I上的两点x1≠x2,恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2,(f((x1+x2)/2)<(f(x1)+f(x2))/2)那么称f(x)是区间I上的(严格)凸函数;如果恒有f((x1+x2)/2)≥(f(x1)+f(x2))/2,(f((x1+x2)/2)>(f(x1)+f(x2))/2)那么称f(x)是区间上的(严格)凹函数。
实函数或虚函数

实函数(Real function),指定义域和值域均为实数域的函数。实函数的特性之一是可以在坐标上画出图形。
虚函数是面向对象程序设计中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。
增减性

依y=f(x),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”
判断复合函数的单调性的步骤如下:(1)求复合函数定义域;(2)将复合函数分解为若干
个常见函数(一次、二次、幂、指、对函数);(3)判断每个常见函数的单调性;(4)将中间
变量的取值范围转化为自变量的取值范围;(5)求出复合函数的单调性。
例如:讨论函数y=0.8^(x²-4x+3)的单调性。
解:函数定义域为R。
令u=x²-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,
u=x²-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,
∴函数y=0.8^(x²-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。
利用复合函数求参数取值范围
求参数的取值范围是一类重要问题,解题关键是建立关于这
个参数的不等式组,必须
将已知的所有条件加以转化。
周期性

设y=f(x),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)
周期函数性质:
(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1、T2∈Q(Q是有理数集)
(6)若T1、T2是f(x)的两个周期,且 T *是无理数,则f(x)不存在最小正周期。
(7)周期函数f(x)的定义域M必定是双方无界的集合。
相似回答