如何在小学数学教学中渗透数学思想方法

如题所述

【在小学数学教学中渗透数学思想方法的具体做法】
1、提高渗透的自觉性:数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学 知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。
2、把握渗透的可行性:数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。 同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。
3、注重渗透的反复性:数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以 后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过分数和百分数应用题有规律的对比板演,指导学生小结解答这类应用题的关键,找到具体数量的对应分率,从而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练,才能使学生真正地有所领悟。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2015-07-06
如果说数学起源于人类生存的需要,或者起源于人类理智探索真理的需要,那么数学思想方法就是伴随着数学的产生而产生,伴随着数学的发展而发展的,它不仅是数学的精髓,也是数学教学的灵魂,更是体现数学本质的重要方面和评价数学教学的主要依据。因此,在小学数学教学过程中,加强数学思想方法的渗透,会有利于教师深刻地认识数学内容,有利于增强学生的数学观念和数学意识,形成学生良好的思维品质。下面从教学过程的角度关注数学思想方法,来交流自己一些不成熟、不全面的认识和看法。
  1.在知识的呈现过程中,适时渗透数学思想方法
  对于数学而言,知识的发生过程,实际上也就是思想方法的发生过程。因此,象概念的形成过程、结论的推导过程、方法的思考过程、问题的发现过程、规律的被揭示过程等等,都蕴含着向学生渗透数学思想方法、训练思维的极好机会。对于学生来说,最常见的困难之源是:一项工作、一个发现、一个规律、……很少以创始人当初所用的形式出现,它们已经被浓缩了,隐去了曲折、复杂的思维过程,呈现出整理加工的严密、抽象、精炼的结论,而导致其诞生的那些思想方法却往往隐为内在形式,成为数学结构系统的具有潜在价值的“内河流”。我们教学工作的一项重要任务,就是揭开数学这种严谨、抽象的面纱,将发现过程中的活生生的教学“反朴归真”地交给学生,让学生亲自参与“知识再发现”的过程,经历探索过程的磨砺,汲取更多的思维营养。例如,在教学圆的面积时,先引导学生回忆以往在推导平行四边形、三角形、梯形等图形面积计算时的方法,再把圆转化成长方形,进而推导出圆的面积计算公式。我们从方法人手,将待解决的问题,通过某种途径进行转化,归纳成已解决或易解决的问题,最终使原问题得到解决。这样的教学活动让学生经历了知识的形成过程,渗透了化归、极限的数学思想,为后继学习起到了非常重要的作用。
  2.在解题思路的探索中,恰当渗透数学思想方法
  课堂教学中,学生是学习的主人。在学习过程中,要引导学生积极主动地参与,亲自去发现问题、解决问题、掌握方法,其实,对于数学思想方法的学习也不例外,在数学教学中,解题思路的探索过程是最基本的活动形式之一,数学问题的解答过程是对数学思想方法亲身体验和获得的过程,也是通过运用对其加深认识和理解的过程。例如,在解决“鸡兔同笼”问题时,学生初读题目,有些无从下手。这时就需要教师引导学生用容易探究的小数量代替《孙子算经》原题中的大数量让学生探究整理,渗透了转化的思想方法;用列表法解决问题,渗透了函数的思想方法;用算术法解决问题,渗透了假设的思想方法;用方程法解决问题,渗透了代数的思想方法;在梳理方法时,利用课件出示简笔画,帮助学生理解各种算法等,渗透了数形结合的思想方法,这样将数学思想方法的渗透和知识教学紧密地结合,帮助学生掌握正确的解题方法,提高发散思维能力。
  3.在实际问题的解决中,灵活渗透数学思想方法
  解题是数学的心脏,学生不仅通过解题掌握和巩固数学基础知识,而且由于数学解题重在解题的整个过程,所以还能培养和发展学生的数学能力,而教师应对学生的解题活动加以指导,不能为了解题而解题,而忽视对思维过程的展示,要在解题过程中揭示后续解题活动中解决类似问题的通用思想方法。因此,加强数学应用意识,鼓励学生运用数学思想方法去分析解决生活实际问题,引导学生抽象、概括、建立数学模型,探求问题解决的方法,使学生把实际问题抽象成数学问题,在应用数学知识解决实际问题的过程中进一步渗透和领悟数学思想方法。例如,客车和货车同时从甲、乙两镇的中点向相反的方向行驶。3小时后客车到达甲镇,而货车离乙镇还有30千米。已知货车的速度是客车的3/4,求甲、乙两镇相距多少千米?分析:由题意知,客车3小时行完全程一半,货车3小时行完全程的一半少30千米。如设甲乙两镇相距z千米,依据“货车的速度是客车的3/4”,可得方程:多数学生都选用了这种方法。教学时不能停留在此,继续引导学生变换一种方式思考:将已知条件“货车的速度是客车的3/4”改变一种叙述方式“货车与客车的速度比是3:4”,因行车时间相同,所以货车与客车所行路程比是3:4,即货车行3份,客车行了4份,货车比客车少行1份少行30千米,因此易知客车行了4份行了120千米,货车行了90千米,甲乙两镇相距240千米。这样,通过转化,使学生体会到分数应用题也可采用整数解法,即可采用比例应用题的方法进行解答,从而巩固与提高学生解答分数应用题的能力,更重要的是让学生感受到转化的方法能变繁为简、化难为易,有助于培养思维的灵活性,克服思维的呆板性。实际上,在数学解题中经常用到的还有诸如数形结合、化归、符号化等思想方法,恰当运用这些思想方法不仅能提高解题效率,还能激发学生强烈的求知欲与创造精神。
  总之,在教学过程中,加强数学思想方法的渗透,在知识的呈现过程中,让学生感知数学思想方法,在解题思路的探索中,让学生感受数学思想方法,在实际问题的解决中,让学生体验数学思想方法,这不仅会提高学生的数学素养,还会为他们进一步学习数学打下扎实的基础。本回答被提问者和网友采纳
相似回答