tan(x)的平方等于(sec(x))^2 - 1,是因为sec(x)与tan(x)有特定的数学关系。
根据三角函数的定义:
tan(x) = sin(x)/cos(x)
sec(x) = 1/cos(x)
将sec(x)^2带入:
sec(x)^2 = (1/cos(x))^2 = 1/(cos^2(x))
然后将sin(x)/cos(x)的平方展开:
(tan(x))^2 = (sin(x)/cos(x))^2 = sin^2(x)/cos^2(x)
接下来,我们使用三角恒等式sin^2(x) + cos^2(x) = 1,将sin^2(x)替换成1-cos^2(x):
(tan(x))^2 = (1-cos^2(x))/cos^2(x)
进一步,我们将右侧分式的分子进行拆分:
(tan(x))^2 = 1/cos^2(x) - cos^2(x)/cos^2(x)
化简得到:
(tan(x))^2 = sec(x)^2 - 1
所以,tan(x)的平方等于(sec(x))^2 - 1。这是基于三角函数的定义和恒等式得出的结果。