给动物听音乐会有什么反应,它们能听懂音乐吗?

如题所述

我们天生就有乐感,乐感与生俱来,同时又能借助听音乐得以强化。几乎人人都有体验、鉴赏音乐所必需的音乐技能。“相对音感”能力使我们能借助音高或节奏辨认出旋律;“节奏感知”能力使我们得以在千变万化的节奏中找到规律。连婴儿都对身边的声调、旋律、节奏或噪音异常敏感。所有迹象都表明,人体早在诞生之初,就做好了感知与享受音乐的准备。

人类的乐感显然很特殊。乐感基于且受限于认知能力(注意力、记忆力、预期能力)及生物本能,是自发形成的一系列自然特征。但它为何如此特别呢?是因为似乎只有人类才拥有乐感吗?它像语言能力那样为人类所独有吗?亦或是所有生物长期进化过程中的产物?

《我和狗狗一起弹钢琴》:

研究音乐的亨詹·霍尼(Henkjan Honing)怀疑这个病毒视频里的狗狗并没有绝对音感(一种超越听觉的认知能力),它只是在按主人凝视的琴键。

达尔文认为,脊椎动物都能感知、欣赏节奏与旋律,因为它们有相似的神经系统。他确信人类的乐感是有生物学基础的。此外,他还认为,对音乐敏感肯定是一种非常古老的特质,比对语言敏感还要古老许多。事实上,他认为乐感是音乐与语言的起源,是性选择进化机制使人类和动物拥有了这一特质。

那么和人类相比,动物的乐感好到什么程度呢?乐感是人类独有的吗?亦或如达尔文所怀疑的那样,(人类和动物)“神经系统的生理特性相同”,因而都具有乐感?想了解音乐与乐感的演化过程,我们必须先确定音乐的组成部分是什么,及它们如何在动物和人类身上体现出来。或许我们能借此判断是否只有人类才有乐感。

伊万·巴甫洛夫(Ivan Pavlov)发现,狗能记住某个音调并将其与食物联系起来。狼、老鼠、椋鸟和恒河猴都能通过叫声的绝对音高识别同类,也能辨别音调。

相对音感是一种听音技巧。大多数人听的不是一段旋律里的个别音调及其频率,而是整首旋律。无论对方用高音还是低音唱《玛丽有只小羊羔》,你都能听出那首歌。即便在嘈杂的咖啡馆里听到扩音器里传出的曲调,你仍然能够立即辨认出是哪首歌。

但是谁唱的呢?你绞尽脑汁,想记起歌手的名字或歌曲的名字,然而大脑却一片空白,于是你打开听歌识曲软件,把智能手机对着扬声器,几秒钟内就找到了歌名、歌手和所属专辑。

“鸣鸟拥有某种听音模式,这使得现代作曲家在作品中赋予音色以重要地位。”

为了使听音识曲成为可能,软件开发者系统分析并高效保存了大部分可商用的歌曲录音。每首歌都有可以体现其特定声音品质的独特“声学指纹”,这些指纹被储藏在存量浩大的档案中。因此,计算机程序会比对智能手机所接收音乐与存档音乐的“指纹”,进而快速有效地听音识曲。对计算机而言,这简直是小菜一碟,但人类却几乎无法做到这点。

然而,如果把智能手机靠向正在唱同一首歌的人,软件要么会表示自己无法识别,要么会乱猜一通。因为数据库中只有有限的经过分析的音乐版本,没有这种随意唱出的音乐,所以软件无法找到对应的“指纹”。而在这种情况下,人类却能立即识别出歌曲,那首歌甚至可能会在他们的脑海中循环播放好几天。

可以说,计算机会惊讶地发现,无论演唱者音调是高是低,节奏是快是慢,跑调还是不跑调,人类只需要听半首歌就能识别出歌手或歌曲。对人类而言,听音乐的部分乐趣源于聆听音调之间的关系(包括旋律和和声)。

长期以来,科学家一直认为鸣鸟拥有绝对乐感,能根据音高或基频识别并记住旋律。40多年前,美国鸟类研究学家斯图尔特·赫尔斯(Stewart Hulse)以欧洲椋鸟为研究对象,进行了一系列听音实验,进而得出了这一结论。他指出,椋鸟能区分出逐渐升高或降低的音调序列,但却识别不了振动频率略升高或降低的音调序列。赫尔斯的结论是,鸟类关注的是绝对频率。和多数哺乳动物一样,欧洲椋鸟拥有绝对音感能力,而非相对音感。

谈及相对音感,或者说识别移调乐曲的能力,以人类为观察对象的研究已经比较深入了。神经科学研究表明,使用相对音感能力时,需要调用由不同神经机制构成的复杂网络,其中包括听觉与顶叶皮层之间的交互网。鸣禽似乎没有这类网络,鉴于此点,当我们研究人类乐感的生物学起源时,其他动物是否也拥有相对音感这个问题就更加令人着迷了。

据我们所知,大多数动物没有相对音感。人类似乎是个例外。但有人可能会猜测相对音感是否仅与音高相关。就声音而言,也许在某些方面,不是绝对生理特质,而是特质之间的关系造就了乐感。

加州大学圣地亚哥分校的研究人员提供了解答这一问题的方向。他们让椋鸟听了音色、音高都经过处理的不同旋律。刺激条件即所谓的音色旋律——每种音调都有不同音色的音调序列。一系列声学实验研究了这些鸟类分类新旋律的模式。

“鱼能够分辨出约翰·李·胡克(John Lee Hooker)和约翰·塞巴斯蒂安·巴赫(Johann Sebastian Bach)的作品。”

令人惊讶的是,研究人员发现椋鸟并不像预料的那样借助音高区分刺激条件,它们借助的是音色和音色变化(频谱轮廓)。鸟类会对某首特定的歌曲做出反应,即便这首歌经过处理,且已用“噪声编码”技术去除了所有音高信息。由此产生的旋律类似嘈杂之音,即一个音符变化为另一个音符,但音高却难以察觉的音色旋律。只有当信息极少时(在赫尔斯以欧洲椋鸟为研究对象的实验中,刺激条件由纯音组成,没有任何频谱信息),鸣禽才会注意音高。

鸣禽主要靠频谱信息及其随时间的变化,更确切地说,靠音符转变时,频谱能量的变化来感知旋律。而人类关注的是音调,基本不会注意音色。

可以说,鸣禽听旋律的方式就像人类听讲话一样。听讲话时,人类主要关注的是频谱信息,这让我们能够区分单词“bath”和“bed”。在乐曲中,旋律和节奏是需要关注的重点。说话时,音高是次要的——它可以表明说话者的身份或话语的情感意义,但谈及音乐,它便成了首要因素。这就是听音乐与听讲话之间一个有趣的区别,不过人们目前还很难理解它。

大脑皮层为语言而生,同时也会被音乐超常刺激,乐感也可能是大脑皮层的副产品。不过,乐感也可能优先于语言和音乐。在这种情况下,乐感可以被解读为人类及许多非人类物种所共有的敏感性,只不过在人类身上,这种敏感性已进化成了两个重合的认知系统:音乐与语言。

奥地利召开的一场国际会议上,笔者偶然发现了支持这一观点的实验证据。在某次讲座中,维也纳大学(University of Vienna)的博士后研究员米歇尔·施皮林斯(Michelle Spierings)曾揭示过斑胸草雀(zebra finches)识别声音序列(她称之为音节)差异的学习过程。这些声音由“mo”、“ca”、“pu”等人类的话语组成。在一系列不同的行为实验中,这些语音的顺序(句法)、音高、持续时间及动态范围(频谱曲线)都发生了变化。

斑胸草雀首先学会了Xyxy和xxyY序列的区别,其中x和y代表不同的语音,大写字母代表乐调重音:即更高、更长或音量更大的重音。举个例子:“MO-ca-mo-ca”不同于“mo-mo-ca-CA”。

然后,斑胸草雀会听见一段重音、结构都有所变化的、不熟悉的序列。该测试目的在于确定鸟类是用乐调重音还是语音顺序来区分差异。

如米歇尔所示,人类主要基于语音顺序来区分差异:譬如abab与aabb不同,而cdcd与abab相似。人类会将abab结构概括化,并推演到尚未听到的cdcd序列。这表明人类聆听序列时,主要关注的是句法或语音顺序。句法(一种语序,如“人咬狗”)是语言的一个重要特征。

相比之下,斑胸草雀主要把注意力放在序列的音乐特质之上,但这并不意味着它们对语序不敏感(其实在某种程度上,它们能理解语序),只不过它们主要靠音高(语调)、持续时间和力度重音(音韵)来区分序列。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2021-03-08
这种理解是片面的和保守的,没有领会它的真正寓意,忽视了它在科学探索方面所蕴藏的积极意义。科学家们通过现代生物声学的研究,发现许多动物对音乐能作出积极的反应。目前,科学家正在研究动物为什么能对音乐作出不同的反应。
第2个回答  2021-03-08
动物听到音乐,也会非常兴奋的,而且也会像人一样躁动不安的,动物也是能听懂音乐的,当然它们听的主要是旋律。
第3个回答  2021-03-08
它们听不懂音乐。
因此你在熟悉的动物身边放音乐时,他们会后退。如果你在不熟悉的动物身边放音乐,他们会吓跑。
第4个回答  2021-03-08
很多动物听到音乐都会有反应,但是他们是听不懂音乐的,需要进行训练。
相似回答