å½æ°å æ£å¼¦ ä½å¼¦ æ£å ä½å æ£å² ä½å²
å½æ°å¾ååæ§è´¨ å¨å¹³é¢ç´è§åæ ç³»xOyä¸ï¼ä»ç¹Oå¼åºä¸æ¡å°çº¿OPï¼è®¾æ转è§ä¸ºÎ¸ï¼è®¾OP=rï¼Pç¹çåæ 为ï¼xï¼yï¼æ
æ£å¼¦å½æ° sinθ=y/r
ä½å¼¦å½æ° cosθ=x/r
æ£åå½æ° tanθ=y/x
ä½åå½æ° cotθ=x/y
æ£å²å½æ° secθ=r/x
ä½å²å½æ° cscθ=r/y
ï¼æ边为rï¼å¯¹è¾¹ä¸ºyï¼é»è¾¹ä¸ºxãï¼
以å两个ä¸å¸¸ç¨ï¼å·²è¶äºè¢«æ·æ±°çå½æ°ï¼
æ£ç¢å½æ° versinθ =1-cosθ
ä½ç¢å½æ° coversθ =1-sinθ
åè§ä¸è§å½æ°é´çåºæ¬å
³ç³»å¼ï¼
·平æ¹å
³ç³»ï¼
sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2
tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2
cot^2(α)+1=csc^2(α)
·积çå
³ç³»ï¼
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·åæ°å
³ç³»ï¼
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
ç´è§ä¸è§å½¢ABCä¸,
è§Açæ£å¼¦å¼å°±çäºè§Aç对边æ¯æè¾¹,
ä½å¼¦çäºè§Açé»è¾¹æ¯æè¾¹
æ£åçäºå¯¹è¾¹æ¯é»è¾¹,
·ä¸è§å½æ°æçåå½¢å
¬å¼
·两è§åä¸å·®çä¸è§å½æ°ï¼
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·ä¸è§åçä¸è§å½æ°ï¼
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·è¾
å©è§å
¬å¼ï¼
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)ï¼å
¶ä¸
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t)ï¼tant=A/B
·åè§å
¬å¼ï¼
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·ä¸åè§å
¬å¼ï¼
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·åè§å
¬å¼ï¼
sin(α/2)=±â((1-cosα)/2)
cos(α/2)=±â((1+cosα)/2)
tan(α/2)=±â((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·éå¹å
¬å¼
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·ä¸è½å
¬å¼ï¼
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积ååå·®å
¬å¼ï¼
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·åå·®å积å
¬å¼ï¼
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·æ¨å¯¼å
¬å¼
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
·å
¶ä»ï¼
sinα+sin(α+2Ï/n)+sin(α+2Ï*2/n)+sin(α+2Ï*3/n)+â¦â¦+sin[α+2Ï*(n-1)/n]=0
cosα+cos(α+2Ï/n)+cos(α+2Ï*2/n)+cos(α+2Ï*3/n)+â¦â¦+cos[α+2Ï*(n-1)/n]=0 以å
sin^2(α)+sin^2(α-2Ï/3)+sin^2(α+2Ï/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
è¯æï¼
左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx ï¼ç§¯ååå·®ï¼
=[sin(n+1)x+sinnx-sinx]/2sinx=å³è¾¹
çå¼å¾è¯
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
è¯æ:
左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=å³è¾¹
çå¼å¾è¯
温馨提示:答案为网友推荐,仅供参考