双曲线上存在四个点,构成正方形,那么离心率的范围

如题所述

因为ABCD是正方形,所以渐近线y=b/a *x 中 b/a>1 则b>a;
∵c^2=a^2+b^2,∴c>√2 a,∵e=c/a,∴e>√2。

在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。

双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。

扩展资料:

双曲线出现在许多方面:

作为在笛卡尔平面中表示函数{\displaystylef(x)=1/x}f(x)=1/x的曲线;作为日后的阴影的路径;

作为开放轨道(与闭合的椭圆轨道不同)的形状,例如在行星的重力辅助摆动期间航天器的轨道,或更一般地,超过最近行星的逃逸速度的任何航天器;作为一个单一的彗星(一个旅行太快无法回到太阳系)的路径;

作为亚原子粒子的散射轨迹(以排斥而不是吸引力作用,但原理是相同的);在无线电导航中,当距离到两点之间的距离而不是距离本身可以确定时,等等。

温馨提示:答案为网友推荐,仅供参考
相似回答