(2) y → 0时, √(1+y) = 1+y/2-y^2/8+o(y^2),
因此x → 0时√(1+x^2) = 1+x^2/2-x^4/8+o(x^4),
即分子√(1+x^2)-1-x^2/2 = -x^4/8+o(x^4).
y → 0时, e^y = 1+y+o(y^2),
因此x → 0时e^(x^2) = 1+x^2+o(x^2).
又cos(x) = 1-x^2/2+o(x^2),
故e^(x^2)-cos(x) = 3x^2/2+o(x^2),
可得x^2·(e^(x^2)-cos(x)) = 3x^4/2+o(x^4).
因此x → 0时(√(1+x^2)-1-x^2/2)/(x^2·(e^(x^2)-cos(x)))
= (-x^4/8+o(x^4))/(3x^4/2+o(x^4))
= (-1/8+o(1))/(3/2+o(1))
→ -1/12.
又x → 0时, sin(x^2)/x^2 → 1,
相除即得所求极限为-1/12.
(3) 由正切差角公式, tan(arctan(x+1)-arctan(x)) = 1/(1+x+x^2),
可得arctan(x+1)-arctan(x) = arctan(1/(1+x+x^2)).
由y → 0时, arctan(y) = y+o(y).
因此x → +∞时, arctan(1/(1+x+x^2)) = 1/(1+x+x^2)+o(1/(1+x+x^2)),
x^2·arctan(1/(1+x+x^2)) = x^2/(1+x+x^2)+o(x^2/(1+x+x^2)) → 1.
追问第三题那个应该是1-x吧,怎么感觉不对啊
本回答被提问者和网友采纳