中性点接地系统和不接地系统的差别

如题所述

中性点接地系统和不接地系统的差别

电力系统中性点接地方式有直接接地与非直接接地两种,中性点非直接接地包括不接地或经消弧线圈接地。
中性点直接接地指电力系统中至少有一个中性点直接或经小电阻与接地装置相连接。中性点直接接地系统保持中性点零电位,
发生单相接地故障时,非故障相对地电压仍然为单相电压,数值不会升高,能够保证单相用电设备安全;
但故障相电流增大,造成接于故障相的电气设备过电流,同时使电流保护动作,切断电源。
中性点非直接接地系统指电力系统中性点不接地或经消弧线圈、电压互感器、高电阻与接地装置相连接。中性点非直接接地系统发生单相接地.
故障时,接地故障电流很小,三相线电压数值不变,一般不需要立即停电;
但非故障相对地电压升高,数值为原相电压的√3倍,因此,用电设备的绝缘水平需要按线电压考虑。

在我国110KV及以上基本为中性点直接接地 ,110KV以下为中性点不接地系统
一般说的变电站电压等级都是说的线电压 相电压把线电压除以根号3就可以了
比如线压110KV 那么相压就是110KV除以根号3约等于63KV

中性点接地系统和中性点不接地系统

评价电力的标准就是“安全性、经济性、灵活性和可靠性”,讨论变压器中性点接地方式,也是用这四性去判别的;
在电力系统中,最容易出现的是单相接地事故,对于中性点不接地系统,当发生单相接地后,接地相的相电压降为零,未接地相的相电压升为线电压,即增加了根号3倍;
1、在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地相电压升高,会因过电压烧毁家用电器,从安全性考虑,我们必须采用中性点直接接地系统,将中性点的电位牢牢固定在“0”;
2、对中压系统,如6KV-66KV系统,大多是三相用电设备,且设备多在室外,出事的几率比较多,设备绝缘强度也比较高,即便出现了单相接地,未接地相电压升高也能承受,三相平衡对称的关系没有改变,也就是说三相系统还能正常运转,这时从可靠性考虑,还是在中压系统采用中性点不接地系统比较好;
3、对于高压系统,如110KV以上的供电系统,电压高,设备绝缘考虑成本不会作得很大,如果中性点不接地,当单相接地时,未接地的二相就要能够承受根号3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加,另外110KV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110KV以上供电系统,我们多采用中性点直接接地系统。

中性点小接地系统和不接地系统是指一个东西吗

小电流接地系统的接地保护主要有两种,一种是无选择性接地保护,一种是有选择性接地保护。
对于第一种,即无选择性接地保护,它基本上是利用小电流接地系统发生单相故障时,三相对地电压的变化来判断接地相别和接地程度,用所属母线电压互感器辅助绕组开口三角处的电压变化启动电压继电器来报警,告知运行人员进行人工查找的,这种保护对出线较少的小电流接地系统来说,比较适用,对于出线较多的系统来说,则多有不便,这时就应用有选择性的接地保护装置直接找出接地线路。
有选择性的小电流接地系统接地保护,很好地利用了系统发生接地时,接地故障电流的特点,实际了保护功能。
小电流接地系统发生接地故障时,非故障线路的保护流过的零序电流为该线路本身非故障相对地电容电流之和,,其方向从母线指向线路。故障线路的保护通过的零序电流为所有非故障线路零序电流之和,其方向是从线路流向母线的。
零序电流保护是利用故障线路始端零序电流大的特点实现的有选择性的保护。一般用在有条件安装零序电流互感器的线路上,且适用于出线较多的系统。一般作用于信号,直接指出故障线路。但有些无人值班变电站也有作用于跳闸的。
中性点不接地(绝缘)的三相系统
各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,即使在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。
在中性点不接地的三相系统中,当一相发生接地时:
一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。
弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现象而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。

怎么区分10KV中性点接地系统和中性点不接地系统

变压器10KV侧是星形连接,且中性点接地是10KV中性点接地系统。否则是不接地系统。
我们国家10KV、35KV系统是采用中性点不接地运行方式,所有的10KV、35KV变压器都没有引出中性线,不存在接地的问题。

中性点直接接地系统和有效接地系统的区别比较

中性点直接接地系统中,发生单相接地后,故障相相电压为0,非故障相电压对地电压不变,对非故障相线电压还是不变的,对故障相的线电压变为相电压.中性点。三相电的星形接法将各相电源或负载的一端都接在一点上,这一点叫做中性点,可以将中性点引出作为中性线,形成三相四线制。也可不引出,形成三相三线制。

中性点接地系统比不接地系统供电可靠性()

差 中性点接地系统,一有接地故障断路器就跳,中性点不接地如有此种情况还可以运行2小时。

中性点直接接地系统和中性点不接地系统的短路各有什么特点

在中性点直接接地的电力系统中 , 以单相接地的故障最多 , 约占全部短路故障的 70% 以上 , 两相短路和两相接地短路分别约占 10%, 而三相短路一般只占 5% 左右。 在中性点不直接接地的电力系统中 , 短路故障主要是各种相间短路故障 , 包括不同两相接地短路。在这种中性点不直接接地电力系统中 , 单相接地不会造成故障 , 仅有不大的电容性电流流过 , 对电气设备基本无影响 , 但中性点发生偏移 , 对地具有电位差 , 其相间电压不平 衡 , 而线电压仍保持不变 , 即三相线电压仍为平衡的 , 故仍可允许运行一段时间 ( 一般为 2h) 。

中性点不接地系统,单相接地。

单相对地电压升高√3倍,相位不变,各相间电压(即线电压)不变,因为单相对地都升高了且升高的是相同的,所以线间电压仍是不变的。

中性点不接地系统C相完全接地

1 图中的电容是线路对地分散电容,为了计算方便分析和计算便用等效电容代替;
2 正常运行时候线路三相通过电容接地,电容阻抗很大,所以实际上A、B、C正常时没有接地的。只有因为特殊原因(比如架空线碰到树枝,或施工挖破电缆等导致对地绝缘被破坏),才是我们常规说的接地故障发生了,比如上图的C相就表示发生了接地故障。
3 三个圈圈是电机的三相绕组,表示电源系统。
等效电容含义:你要知道线路一通电之后,线路每一个微小部分对地都有电容存在,当然电容可能很小很小,但因为线路很长,所有的电容加起来那可能就比较大了,等效电容就是把全部长度对地的电容加起来后的和,用这样一个电容来代替无处不在的微小电容。ok?

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜