tanx的平方的不定积分怎么求

如题所述

计算(tanx)²不定积分的方法:

(tanx)²

=∫[(secx)^2-1]dx

=∫(secx)^2dx-x

=tanx-x+c(c为常数)。

扩展资料:

不定积分求法:

1、积分公式法。直接利用积分公式求出不定积分。

2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。

(1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

(2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。

3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu 

两边积分,得分部积分公式∫udv=uv-∫vdu。

参考资料来源:百度百科-不定积分

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-09-23
(tanx)^2=(secx)^2-1,所以(tanx)^2的不定积分即为tanx-x+C本回答被提问者采纳
第2个回答  2014-11-17

相似回答