观测星星有哪些方法?

如题所述

观测星星的整体运动而不仅仅是一条光线。假如,一颗行星在一平面内运行,在引力周围的中心恒星的移动将会引起星球在几年之内向观测者靠近或远离。这将会使恒星的闪烁频率有微小而可测的变化,但其作用甚微,木星引起太阳以每秒12米的径向速度前进或后退,从而产生了小于千万分之3的光线频率的变化。尽管大多数研究星球径向速度的方法只能精确到每秒几百米,但是有些研究者已找到更精确的系统来观测行星。

加拿大维多利亚大学的布鲁斯?坎贝尔和他的同事最近使用莫纳壳西死火山上的3.6米长的加拿大和法国联合研制的夏威夷式的望远镜完成了一项历时7年的研究工作。他们在望远镜信号束中用氰氟化物打开了一个洞,用以标定这颗恒星的光谱。包括德克萨斯大学的麦克唐纳天文台在内的许多研究小组也使用了同样的技术,不同的是,麦克唐纳天文台使用碘胞作为标定光谱的标准。尽管这些研究进行了7年,但至今仍未发现任何行星,他们本应能够在观测的恒星周围发现巨大的行星。

到现在为止这些计划尚无一成功,这使人们认识到想要找到木星大小的一颗行星都是如此艰难,而要找到地球大小的行星更是难上加难。据安吉尔来看,甚至是用改良的光学仪器从地球上来探测地球大小的行星也是不大可能的。因此,大概需要把观测点移到太空中,即使在太空中观测也并非易事。就算可以成功地避开地球大气层的影响,要找到地球大小的行星的清楚影像,需要有2倍于哈勃太空间望远镜大小和10倍光滑度的空间望远镜,这将耗资昂贵,并且在若干年内很难制成。

一个耗资较少的探测地球大小的行星的频率的计划,1994年由加利福尼亚国家航天和航空局埃姆斯研究中心的比尔?布鲁克作为该局“探索”计划的一部分提出。这个计划主要是监测类太阳恒星的明亮度以便研究行星经过它们时引起的变化,效果同样是很不明显的。当地球在太阳前经过时,太阳的亮度只会减少0.01%,但这种变化会持续几个小时,并在一个固定的时间内每年发生1次。这就使得研究小组有可能把这种情况与耀斑或恒星黑子引起的恒星亮度的随意变化相区别。布鲁克说3次这样重复出现的情况就可以证明1个类似地球的行星的存在,并且研究者也可预测下次的通过时间。

只要观测者大体上与恒星的行星运行轨道平面平行,小行星接近恒星就可探测到。但从几何学角度来考虑这种可能性只有1%左右,既然没有办法事先知道从哪些星星着手研究,最好的办法就是同时观测大批的恒星,寄希望于能够找到存在正确平面的行星和恒星,并捕捉到那些正要经过恒星的行星。这种观测办法需要连续不停的监测,并且最好在太空中进行,在那里没有阳光或坏天气的干扰。

布鲁克的研究小组将使用一个视角为100的1米广角的天文望远镜,并配备一组有极高灵敏度的探测仪。这个望远镜将被安置在卫星上与卫星一道进入运行轨道。研究小组选择的观测方向包括类似我们的太阳的5000颗星星。

1995年早些时候,一个由100多个重要人物组成的审查委员会评价说,布鲁克研究小组的计划是唯一可行的探寻类似地球行星的方法。但仍有人怀疑它的实施是否可把费用控制在“探索”计划的财政预算之内,即每个小组不超过1.5亿美元。两个相对独立的专门小组正在对研究小组进行评估,并决定1996年它是否可以归入“探索”计划。

由于类地的行星较小的质量以及对恒星较小的影响,用天体测量学的方法探寻类地的行星就需要精确到1/10微秒的仪器,只有用干涉仪才能达到此效果。从相隔一定距离的两台望远镜发出的光束被混合在一起,去模拟一台带有与两台望远镜间距一样大的镜片的独立望远镜拥有的分辨率。

在位于帕萨迪纳的国家航空和航天局的喷气推进器实验室,米歇尔?绍和他的同事们正在建造红外式干涉仪,可使其用于高精度的天体测量仪中。他们想要探测最多40光年远的天王星和海王星大小的太阳系外行星,正在建造的干涉仪是由两个相距100米的40厘米望远镜组成的。

国家航天和航空局同时正在夏威夷的莫纳克亚死火山上,安装使用了两个类似的10米直径的凯克天文望远镜用于行星研究。一种方法是在主体望远镜周围搭一些小的“分支”望远镜,并与主体部分中一个望远镜平行,构成多种组成部分的干涉仪,米歇尔相信依靠如此高精度的仪器的帮助,寻找大小介于地球与海王星之间的行星应该是可能的。

用天体测量学的方法探测类地行星的最后步骤是具有挑战性的。类似于来自恒星黑子的影响的复杂因素可能会造成很难排除的错误。即使一个天体测量计划最终成功了,我们依然无法知道所寻找的行星是否能够居住。一个由巴黎大学的艾伦?莱热领导进行的达尔文探测计划,将使用以太空为基地的干涉仪寻找生命存在的信号。这部干涉仪是由1~2米为直径、10~30米间距的两个或多个红外线望远镜组成的。

达尔文探测计划的仪器由于许多原因将会观察到红外光谱。首先,恒星与行星之间红外线的对比度比可视光线要大,这是因为类太阳恒星带有高达5100开尔芬的温度,主要在光谱的可视地区发射光线,而行星的温度只有100开尔芬或更少,散射的最大值都集中于红外线外侧,尽管恒星更大的体积和更高的温度使它在所有波长范围内都比行星亮,但在光谱红外线区,亮度的差别则小得多,故而行星更容易被辨别位置。在10微米的波长范围内,地球是太阳系内最亮的行星,尽管它比太阳要暗1000万倍。达尔文小组的干涉仪将会顺利安装好,这样不同的光束将会互相进行破坏性干扰甚至抵消,这使得探测类地行星发射出的微弱信号比较容易。

既然氧气在红外线区内存在易辨认的光谱线,行星的信号可在波长6~9微米的臭氧吸收带内探测到,在这个吸收带内类地行星与它的中心恒星相比较时显得相对明亮。臭氧层的出现预示着在下层的大气中含有大量的氧气,氧气具有很大电抗性,经常很快地移动出大气层中,它的出现预示氧气被生物放射物质所代替发生光能合成。

达尔文探测计划是欧洲航天局(ESA)考虑范围的两个行星探测计划之一。从现在开始到2000年,达尔文探测计划和其对手天体测量——GAIA计划将被进行更细致的研究和评估,最终其中之一会被选中作为欧洲航天局的“地平线2000长远太空”计划(GAIA)的中流砥柱。GAIA可以胜任探测行星的任务,而在技术上,富有挑战性的达尔文研究小组同样可以探测到生命的痕迹。

实际上,确定一颗遥远的行星的距离是所有任务中最艰巨的。甚至那些直接探测行星的方案,也只能看到一个光点。它需要以太空为基地的干涉仪,并配有间隔相当远的望远镜。这些工作用一架航天器是无法完成的,但米歇尔?绍相信不久就可能使用不同的航天器作为这架巨大的干涉仪的部件。他设想将3艘宇宙飞船发射进入太阳系轨道中,排列成边长为1000公里的等边三角形,两个是望远镜,第三个作为光束混合和分析的导航台。研究人员可利用激光对3艘宇宙飞船的距离进行极其精确的测量,这样光束可以正确地混合在一起。这个计划将构成太阳系外行星系统研究的最后一步,并将第一次具体描绘出太阳系外的行星世界。

这的确给我们描绘出一幅充满希望的未来的蓝图。

温馨提示:答案为网友推荐,仅供参考
相似回答