X射线分析的X射线

如题所述

第1个回答  2016-06-02

一、X射线的产生
X射线是一种短波长(0.005-10nm)、高能量(2.5×10^5-1.2×10^2)的电磁波。它是原子内层电子在高速运动电子流冲击下,产生跃迁而发射的电磁辐射。X射线有连续X射线和特征X射线。
(一)连续X射线
连续X射线由高真空度的X射线管产生。X射线管有一个热阴极和一个阳极(靶)。当热阴极发射出热电子后,电子在几万电子伏高压电场下被加速,电子流撞击到阳极靶上,当高速电子撞击靶面时,受到靶材料原子核的库仑力作用而突然减速,使电子周围电磁场发生急剧变化。电子的部分动能转变为X射线辐射能。由于撞击到阳极靶上的电子并不都是以同样的方式受到原子核的库仑力作用,其中有些电子在一次碰撞中立即释放出全部能量而停止运动,有些电子则与靶材料发生多次碰撞才逐步失去动能而停止运动,从而产生了不同波长的X射线。对于大量电子射到靶材料来讲,其能量损失或转变是一个随机变量,因而产生各种波长的连续X射线。
电子在一次碰撞中立即释放出全部能量而停止运动的,产生出能量最大、波长最短的X射线,它符合下列关系:

式中:m、v、e分别是电子的质量、速度、所带电荷;U是X射线管的管电压; 为X射线短波极限波长,单位为nm。由式(13-8)可见, 大小取决于X射线管的管电压,而于靶材料无关。
实验证明,连续X射线的总强度IX与X射线管内的电流强度i(mA)、电压U(kV)和阳极材料的原子序数Z有关,即Ix=AiZU^2 (13-9)
式中A为常数。可见,要获得高强度的连续X射线,必须采用重金属靶(如铜、钼、钨等)、较大的X射线管电流及尽可能高的X射线管电压。
(二)特征X射线
当X射线管电压提高到一定的程度(如钼靶在25kV时),就会在一定的波长处出现强度很大的特征谱线叠加在连续X射线上,即称为特征X射线。这是由于发射电子获得了足够的能量后,就能轰击出靶材料原子内层里的电子,从而形成空轨道,使原子处于激发态,这时外层电子马上跃入内层空穴,同时辐射出特征X射线。这样又在较外层中产生出新的空轨道,因而又产生相应的X射线,这便得到一系列具有靶材料信息的特征X射线。如图13-11所示,当外层电子跃迁至K层、L层、M层所产生的X射线,分别称为K系、L系和M系射线。同一线系中各条谱线是由各个能级上电子向同一壳层跃迁而产生。例如,K系的Ka、Kb、Kr等谱线分别是由L、M、N等层电子跃迁至K层所产生的X射线。通常在一组线系中,a线是最强的特征X射线。
特征X射线波长与入射电子或连续X射线能量无关,只取决于靶材料。不同元素材料的靶,其原子结构不同,各层电子能量亦不同,各层电子能量亦不同,因而特征X射线波长各不相同。
二、X射线荧光分析
高能电子撞击原子时,激发原子内层电子跃迁就会产生X射线,这称为初级(一次)X射线。如果以初级X射线为光源去照射激发试样分子或原子,也可以产生次级(二次)X射线,这种二次称作X射线荧光。显然,只有在初级X射线的能量大于试样原子内层电子的激发能时,才能撞击出内层电子,所以产生的X射线荧光的波长总比初级X射线的波长要长。这种方法最大的特点是只产生特征X射线,而不产生连续X射线。产生的X射线荧光线也就是元素的特征线,这就是X射线荧光分析(X-ray Fluorescence Analysis)的基本原理。

相似回答