对角线的性质如下:
⑴对角线互相平分的四边形是平行四边形;
⑵对角线互相平分且相等的四边形是矩形;
⑶对角线互相平分且垂直的四边形是菱形;
⑷对角线相等且互相垂直平分的四边形是正方形;
⑸对角线相等的梯形是等腰梯形。
公式:
从n边形的一个顶点可以引出(n-3)条对角线。n边形一共有n(n-3)/2条对角线。(n-3)是因为n边形共有n条边,从一个顶点出发,除了自己这个顶点和与自己相邻的两个顶点不能连成对角线,一共三条线,所以减去3,为(n-3)。
n(n-3)/2是因为从一个顶点出发可以引出(n-3)条对角线,而n边形共有n条边,所以为n(n-3),但其中又有正好一半儿是重复的,所以就再除以2,为n(n-3)/2。
扩展资料:
注意事项:
对角线互相垂直;对角线相等且互相平分,每条对角线平分一组对角。
对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。
特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°,正方形的两条对角线把正方形分成四个全等的等腰直角三角形。