若在杨氏双缝实验装置的狭缝s1搐放异折射率为n厚度为h的介质板则干涉条纹如何

如题所述

若在杨氏双缝实验装置的狭缝s1搐放异折射率为n厚度为h的介质板则干涉条纹向上移动。

绪论:

假若光束是由经典粒子组成,将光束照射于一条狭缝,通过狭缝后,冲击于探测屏,则在探射屏应该会观察到对应于狭缝尺寸与形状的图样。

可是,假设实际进行这单缝实验,探测屏会显示出衍射图样,光束会被展开,狭缝越狭窄,则展开角度越大。在探测屏会显示出,在中央区域有一块比较明亮的光带,旁边衬托著两块比较暗淡的光带。

类似地,假若光束是由经典粒子组成,将光束照射于两条相互平行的狭缝,则在探射屏应该会观察到两个单缝图样的总和。但实际并不是这样,在探射屏显示出一系列明亮条纹与暗淡条纹相间的图样。

19世纪初,托马斯·杨(ThomasYoung,1773~1829)发表了一篇论文,《物理光学的相关实验与计算》(Experiments and Calculations Relative to Physical Optics),详细阐述这些实验结果。由于亮度分布可以用波的相长干涉与相消干涉这两种干涉机制来解释,意味着光是一种振动波。

这促使光波动说被广泛接受,也导致17、18世纪的主流理论——光微粒说——渐趋式微。但是后来20世纪初对于光电效应的理论突破演示出,在不同状况,光的物理行为可以解释为光是由粒子组成。这些貌似相互矛盾的发现,使得物理学家必须想办法超越经典力学,更仔细地将光的量子性质纳入考量。

托马斯·杨双缝干涉实验对波动光学的建立作出了伟大贡献,而其应用于电子干涉实验的成功则有力地证实了实物粒子的波粒二象性,揭示了微观世界的量子本性,开创了量子理论的新纪元。

使用双缝实验与各种不同衍生的变版来检试单独粒子的物理行为,这方法已成为经典的思想实验,因为它能够清楚地探讨量子力学的核心谜题,它演示出对于实验结果的理论预测能力所不可避免的基础极限。

稍微改变双缝实验的设计,在狭缝后面装置探测器,专门探测光子通过的是哪一条狭缝,则干涉图样会完全消失,不再能观察到干涉图样;替代显示出的是两个单缝图样的简单总和。这种反直觉而又容易制成的结果,使得物理学者感到非常困惑不解。



温馨提示:答案为网友推荐,仅供参考
相似回答