第1个回答 推荐于2016-08-29
系数矩阵 A =
[1 2 1 -1]
[3 6 -1 -3]
[5 10 1 -5]
行初等变换为
[1 2 1 -1]
[0 0 -4 0]
[0 0 -4 0]
行初等变换为
[1 2 0 -1]
[0 0 1 0]
[0 0 0 0]
方程组同解变形为
x1+2x2-x4=0
x3=0
即 x1=-2x2+x4
x3=0
取 x2=-1,x4=0,得基础解系 (2,-1,0,0)^T;
取 x2=0,x4=1,得基础解系 (1,0,0,1)^T.
则方程组通解为
x=k(2,-1,0,0)^T+c(1,0,0,1)^T,
其中 k,c 为任意常数本回答被提问者采纳