高岭土-纳米银复合物的制备

如题所述

由于纳米银被广泛用于照相感光材料[1]、催化剂[2]、光催化剂[3]、化学分析剂[4]以及抗菌剂[5-13]等而受到较深入研究。用天然硅酸盐矿物作载银基体的有海泡石[6]、坡缕石[7]、沸石[8]、膨润土[9]、累托石[10]、高岭石[11]、凹凸棒石[12]等。由于高岭石结构的特殊性,目前在国内尚无高岭石载银文献报道,本实验用萍乡硬质高岭土为原料,用有机插层复合物为前驱物,通过吸附后还原生长的方法成功制备了高岭土-纳米银复合物,并用X射线衍射和透射电镜进行了表征。

一、实验用主要原料

高岭土:萍乡硬质高岭土,≤200目。无水乙醇:分析纯,含量≥99.7%。二甲基亚砜:分析纯,含量≥99.0%。甲醇:分析纯,含量≥99.5%。硼氢化钠:分析纯,含量≥96%。硝酸银:分析纯,含量≥99.8%。

二、制备方法

制备分为3个步骤:预插层体高岭土-二甲基亚砜(Kao-DMSO)的制备;用甲醇溶液浸泡Kao-DMSO制备高岭土-甲醇复合物(Kao-MeOH);与硝酸银溶液反应吸附Ag+,加入还原剂硼氢化钠溶液(NaBH4)还原Ag+得到高岭土-纳米银复合物(Kao-Ag)。

Kao-DMSO的制备:制备方法详见第三章。

Kao-MeOH的制备:用甲醇浸泡Kao-DMSO,室温下磁力搅拌反应5d,每天更换新的甲醇溶液,离心沉降分离,将固体室温下风干即得到白色粉末状样品。

Kao-Ag的制备方法:按一定比例将Kao-MeOH浸泡于100ml一定浓度的硝酸银溶液中,磁力搅拌反应一定时间,吸附Ag+。然后将一定浓度的硼氢化钠溶液缓慢加入到上面制备的吸附有Ag+的高岭土的悬浮液中,磁力搅拌还原反应1h,过滤分离,将固体用蒸馏水冲洗2次,置于烘箱中50℃下烘干即得试验产品(图7-1)。

三、表征方法

表征高岭土-纳米银最有效的方法是透射电镜分析和X射线衍射分析,前者观察纳米银的形貌和粒径大小,后者通过考证高岭石层间距的变化来确认纳米银粒子是插入层间还是仅吸附于表面。

四、结果与讨论

制备的高岭土-纳米银复合物的质量主要受混合物配比、硝酸银浓度、硼氢化钠浓度和反应时间等因素的影响,本次工作主要确定了最佳混合物配比、最佳硝酸银浓度等有关工艺参数,

1.XRD分析

从图7-2可知,高岭土原样中d001值为0.72nm。高岭土与DMSO作用后,d001值由原来的0.72nm增大到1.12nm,层间距增加0.40nm;衍射峰尖锐而对称,说明DMSO分子在高岭石层间有高度取向。经甲醇置换取代DMSO分子后,复合物中高岭石的层间距略有减小。在纳米银生长后,高岭土-纳米银复合物的X射线衍射曲线图上(图7-2d),1.12nm峰消失,出现微弱的0.72nm峰值,说明DMSO已被纳米银置换或脱嵌;由于纳米银插入层间导致多数高岭石晶层的层间距并未恢复到0.72nm,导致该衍射峰较弱。与高岭土原样及Kao-DMSO对比,Kao-Ag复合物在低角度区虽然没有尖锐的衍射峰,但曲线在低角度区有明显的抬升,强度值明显比高岭土原样或Kao-DMSO的衍射值高,说明高岭石层间域有不同程度的膨胀。无尖锐的衍射峰,说明膨胀部分的层间距变化范围较大。

图7-1 制备高岭土-纳米银复合物的示意图[11]

小角度的X射线衍射图谱(图7-3)进一步表明,Kao-DMSO的峰强、峰形与高岭土原样在0.5°~3°(2θ)范围内没有明显的区别,而Kao-Ag复合物的XRD峰形、峰的强度值在0.5°~3°(2θ)范围内与高岭土差别明显,峰的左肩处强度值比高岭土原样要高很多,说明纳米银粒子的生成使得高岭石层间有较大距离的膨胀;同时左肩处没有尖锐的峰值也说明高岭石层间的银粒子分布不均匀或粒径大小不一,不是呈高度取向排列,与有机小分子的定向排列显著不同。左肩处层间距为9.19nm,与高岭石比较层间距增大约为8.47nm,因此推断银粒子的粒径在高岭石层间厚度在8.47nm左右。

2.原料配比与Kao-Ag外观颜色关系

分别将0.3g、0.6g、0.9g、1.2g、1.5g的Kao-Ag产Kao-DMSO与100ml的硝酸银溶液(浓度为10-3M)反应,制备的物的颜色由黑褐色逐渐变为淡黄色。从颜色来看,配比确定为0.9g或1.2g比较合适,既保证了产品的外观颜色,又保证负载尽量多的纳米银粒子。

3.原料配比与纳米银粒径关系

硝酸银与高岭土-二甲基亚砜的配比不同,制备的高岭土-纳米银中的银的粒径大小、分布也不一样。虽然纳米银粒子的(111)衍射峰与高岭土的衍射峰叠加而难以辨别,但该处的衍射峰有明显的规律,随着银含量增加,衍射峰向低角度有微小的偏移(图7-4),即粒径有所增大。根据透射电镜照片统计的结果与XRD分析结果一致(图7-5、表7-1),即银含量增加,银的粒径增大。从透射电镜照片也可看出,银粒子的粒径分布不是正态分布。粒度统计结果,高岭石层间纳米银粒子粒径一般为8~14nm,位于高岭石表面或端面的纳米银粒径可达54nm,平均粒径11.62~15.35nm。总体来看,银粒子的粒径呈双峰分布,这是由于一种纳米银粒子生长时分布于受限的高岭石层间,其生长受层间域的限制且难以聚合成大颗粒,因而粒径小且大小较均匀;而大的纳米银粒子常分布于颗粒表面或高岭石端面处,纳米银在这些部位生长时不受生长空间限制,颗粒容易聚合,故此粒径大小悬殊,形态多不规整,常可看到大颗粒由数个小颗粒聚合而成。当Ag的含量较高时,在高岭石颗粒表面或端面吸附较多的银粒子,大的颗粒显著较多(见图7-5中Ag-3c的粒径分布)。

图7-2 高岭土、Kao-DMSO、Kao-MeOH、Kao-Ag的X射线衍射图

(a)高岭土原样;(b)Kao-DMSO;(c)Kao-MeOH;(d)Kao-Ag

图7-3 高岭土、Kao-DMSO、Kao-Ag的小角度X射线衍射图

(a)高岭土原样;(b)高岭土-DMSO;(c)AG-3C:高岭土-纳米银复合物;(d)AG-4A2:高岭土-纳米银复合物

图7-4 不同配比制备的高岭土-纳米银的XRD图

(a)2.5%的Ag;(b)2.0%的Ag;(c)1.0%的Ag;(d)0.5%的Ag

图7-5 纳米银粒子的透射电镜照片及粒度分布频率图

表7-1 高岭土-纳米银中纳米银的粒径

注:dave/nm(TEM)据透射电镜照片统计的平均粒径。

4.硼氢化钠浓度对纳米银粒径的影响

图7-6 纳米银的透射电镜照片及粒度分布频率图

为研究硼氢化钠浓度对纳米银粒子粒径的影响,用硝酸银溶液(10-2M)反应8h的混合液过滤,将固体物分为3份,分别用浓度为1×10-2M、2×10-2M、4×10-2M的硼氢化钠溶液浸泡,磁力搅拌反应1h,将载银的高岭土作测试,其透射电镜照片见图7-6,粒度统计见图7-6中的Ag-4a2、Ag-4b2、Ag-4c2,其平均粒径见表7-2。

表7-2 高岭土-纳米银中纳米银的粒径

注:dave/nm(TEM)据透射电镜照片统计的平均粒径。

粒度统计结果,高岭石层间纳米银粒子粒径一般为8~16nm,位于高岭石表面或端面的纳米银粒径可达64nm,平均粒径11.41~17.91nm。显然,以较低的硼氢化钠浓度获得的纳米银粒子粒径较小且分布较为集中。

可见,银粒子的粒径随硼氢化钠浓度增大而增大;浓度小,粒径集中且均匀;浓度大,粒径分布宽且大颗粒多。因此,要得到小粒径的纳米银粒子,硼氢化钠浓度不宜过大。

5.硝酸银浓度对纳米银粒径的影响

纳米银的透射电镜照片及粒径分布见图7-7,统计结果见表7-3。可见,纳米银的粒径随硝酸银反应初始浓度增大而增大,硝酸银浓度增大到2倍或5倍,生成的纳米银粒径仅有微小增大,但粒径分布范围却有较大幅度增宽。可见,要得到粒径均一的纳米银粒子,应选择低浓度。与硼氢化钠初始浓度对纳米银粒径的影响相比,硝酸银的影响程度较小,在研究的浓度范围内,纳米银的粒径变化不大,粒径分布比较集中。可以认为,要获得小粒径的纳米银粒子,硝酸银的反应初始浓度用1×10-3M比较合适。

综合以上分析结果可以认为,由透射电镜照片和粒度统计结果,制备的高岭土-纳米银复合物中的银的粒径大小、分布存在如下规律:高岭石层间的纳米银粒子粒径大小均匀且粒径分布范围窄,呈圆形;高岭石片层表面或端面处的纳米银粒子粒径粗大,形状不规则,常见有多个纳米颗粒团聚在一起的现象。

对生成的纳米银的粒径影响程度从大到小的顺序为:硝酸银与Kao-DMSO的配比、还原反应时硼氢化钠溶液的初始浓度、还原反应时硝酸银溶液的浓度。硝酸银或硼氢化钠的浓度越大,所得实验样品的纳米银粒子的粒径越大;要得到粒径较小、粒径分布比较集中的样品,应控制硝酸银的浓度为1×10-3M~5×10-3M、硼氢化钠的浓度1×10-2M,配比为高岭土中Ag的含量占0.5%~1%(即0.9g~1.2g的Kao-DMSO与100ml浓度为1×10-3M的硝酸银溶液反应)。

表7-3 高岭土-纳米银中纳米银的粒径

注:dave/nm(TEM)据透射电镜照片统计。

图7-7 纳米银的透射电镜照片及粒度分布频率图

温馨提示:答案为网友推荐,仅供参考
相似回答