第1个回答 2016-07-26
那我就直接从倒数第四步开始讲了哈,分母里有π/12,分子后面部分里也有π/12,所以尽量让分子前面部分也出现π/12,所以有第三步,sin(π/3 - (π/12 + θ))出现,因为sin(a-b)=sinacosb-cosasinb,带入sin(π/3 - (π/12 + θ)),得到分子为2(sin(π/3)cos(π/12 +θ ) - cos(π/3)sin(π/12 + θ)) + sin(π/12 + θ),因为sin(π/3) = √3/2,cos(π/3) = 1/2,带入分子得√3cos(π/12+θ) - sin(π/12 + θ) + sin(π/12 + θ) ->√3cos(π/12+θ),除以分母cos(π/12+θ),最终结果为√3