一般形式
ax^2+bx+c=0(a、b、c是实数a≠0)
例如:x^2+2x+1=0
1..配方法(可解全部一元二次方程)
2.公式法(可解全部一元二次方程)
3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.
4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)
5.代数法(可解全部一元二次方程)
直接介绍代数法
ax^2+bx+c=0
同时除以a,可变为x^2+bx+c=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0
再变成:y^2+(b^2*3)/4+c=0
y=±√[(b^2*3)/4+c]
如何选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦).
知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视.
一元二次方程的一般形式为:ax^2+bx+c=0,(a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程.
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法;5,代数法
温馨提示:答案为网友推荐,仅供参考