两角差的余弦公式:cos(α-β)=cosαcosβ+sinαsinβ。
两角和差公式分别如下
两角和的正弦公式:sin(α+β)=sinαcosβ+cosαsinβ
两角差的正弦公式:sin(α-β)=sinαcosβ-cosαsinβ
两角和的余弦公式:cos(α+β)=cosαcosβ-sinαsinβ
两角差的余弦公式:cos(α-β)=cosαcosβ+sinαsinβ
两角和的正切公式:tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
两角差的正切公式:tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
切割化弦公式
也就是普通的正割余割或者正切余切转化成正弦余弦的公式。
例如:tanx=sinx/cosx cotx=cosx/sinx secA=1/cosA csc=1/sinA
切割化弦这是一种处理三角问题的方法,就是在处理关于正切、余切的三角函数问题时将正切表示为正弦与余弦的比,将余切表示为余弦和正弦的比。由于正弦和余弦的性质是我们熟悉的,所以在这样转化之后问题通常可以获得解决。
扩展
两角和与差公式
tan (A+B)= (tanA+tanB)/ (1-tanAtanB)。 tan (A-B)= (tanA-tanB)/ (1+tanAtanB)。
两角和与差正切公式推导
tan(A+B)=sin(A+B)/cos(A+B)=sinAcosB+cosAsinB/cosAcosB-sinAsinB
分子分母分别除以cosAcosB(cosA不等于0,cosB不等于0)
tan(A+B)=tanA+tanB/1-tanAtanB,tan(A-B)=tanA-tanB/1+tanAtanB
tan(A+B)要有意义,A+B≠π/2+kπ(k是整数)
tan(A+B)=sin(A+B)/cos(A+B)=(sinAcosB+sinBcosA)/(cosAcosB-sinAsinB)
当cosAcosB≠0时,分子分母同时除以cosAcosB,得
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
用-B换B得tan(A-B)=(tanA-tanB)/(1+tanAtanB)
当cosAcosB=0时,不妨设cosA=0,则A=π/2+kπ
此时tanA不存在,故不能使用和差角公式。
两角和与差的正弦余弦正切公式
sin(α±β)=sinα·cosβ±cosα·sinβ,cos(α+β)=cosα·cosβ-sinα·sinβ,tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。
两角和(差)公式包括两角和差的正弦公式、两角和差的余弦公式、两角和差的正切公式。两角和与差的公式是三角函数恒等变形的基础,其他三角函数公式都是在此公式基础上变形得到的。正弦公式是描述正弦定理的相关公式,而正弦定理是三角学中的一个基本定理,它指出:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。几何意义上,正弦公式即为正弦定理。
先利用单位圆(向量)推到两角和与差的余弦公式,再利用诱导公式推导正弦公式,最后利用同角三角函数的基本关系推到正切公式。
正弦和差公式始终是sin与cos相乘; 余弦和差公式始终是cos与cos相乘,sin与sin相乘,两角和与差的正弦公式:正=正余余正符号同两角和与差的余弦公式:余=余余正正符号异。
温馨提示:答案为网友推荐,仅供参考