求极限limx→∞[1^2/(n^3+1)+2^2/(n^3+2)+……+n^2/(n^3+n)]

如题:limx→∞[1^2/(n^3+1)+2^2/(n^3+2)+……+n^2/(n^3+n)]详解

(1^2+2^2+...+n^2)/(n^3+n)<=1^2/(n^3+1)+2^2/(n^3+2)+……+n^2/(n^3+n)
<=(1^2+2^2+...+n^2)/(n^3+1),
——》n(n+1)(2n+1)/6(n^3+n)<=1^2/(n^3+1)+2^2/(n^3+2)+……+n^2/(n^3+n)
<=n(n+1)(2n+1)/6(n^3+1),
limn→∞ (n+1)(2n+1)/6(n^2+1)=limn→∞ (1+1/n)(2+1/n)/6(1+1/n^2)=2/6=1/3,
limn→∞ n(n+1)(2n+1)/6(n^3+1)=limn→∞ (1+1/n)(2+1/n)/6(1+1/n^3)=2/6=1/3,
——》limn→∞ (n+1)(2n+1)/6(n^2+1)<=原式<=limn→∞ n(n+1)(2n+1)/6(n^3+1),
由夹逼定理知:
原式=1/3。追问

开头是怎么个思路,

追答

各分式的分母不同不能直接加,就设想换同分母来便于计算,
再考虑夹逼定理。

追问

(1^2+2^2+...+n^2)/(n^3+n)怎么换成n(n+1)(2n+1)/6(n^3+n)

追答

平方和公式:1^2+2^2+...+n^2=n(n+1)(2n+1)/6。

温馨提示:答案为网友推荐,仅供参考
相似回答