1ãan+Sn=2n+1
æ±n->âlim[1/2a1a2+1/2^2a2a3+...+1/2^nana(n+1)]
解ï¼
a(n-1)+S(n-1)=2(n-1)+1
两å¼ç¸åï¼
an-a(n-1)+Sn-S(n-1)=2
Sn-S(n-1)=an代å
¥ï¼
2an=a(n-1)+2
an=(1/2)a(n-1)+1
n=1æ¶ï¼a1+S1=a1+a1=2x1+1=3ï¼
a1=3/2=ï¼4-1ï¼/2=ï¼2^2-1ï¼/2
a2=(1/2)a1+1=(1/2)ï¼3/2ï¼+1=3/4+1=7/4=ï¼8-1ï¼/4=ï¼2^3-1ï¼/2^2
a3=(1/2)a2+1=(1/2)ï¼7/4ï¼+1=7/8+1=15/8=ï¼16-1ï¼/8=ï¼2^4-1ï¼/2^3
a4=(1/2)a3+1=(1/2)ï¼15/8ï¼+1=15/16+1=31/16=(32-1)/16=(2^5-1)/2^4
çæµï¼
ak=ï¼2^(k+1)-1)/2^k
aï¼k+1ï¼=(1/2)ak+1=(1/2)[ï¼2^(k+1)-1)/2^k]+1=ï¼2^(k+1)-1)/2^ï¼k+1
ï¼+1=[2^(k+1)-1+2^(k+1)]/2^(k+1)=[2x2^(k+1)-1]/2^(k+1)
=[2^(k+2)-1]/2^(k+1)
çæµæ£ç¡®ã
1/2^kaka(k+1)=(1/2^k)[2^k/(2^(k+1)-1)][2^(k+1)/(2^(k+2)-1)]
=2^(k+1)/(2^(k+1)-1)(2^(k+2)-1)
=2^(k+1)(2-1)/(2^(k+1)-1)(2^(k+2)-1)
=[2^(k+2)-2^(k+1)]/(2^(k+1)-1)(2^(k+2)-1)
=[(2^(k+2)-1)-(2^(k+1)-1)]/(2^(k+1)-1)(2^(k+2)-1)
=1/(2^(k+1)-1)-1/(2^(k+2)-1)
â´
1/2a1a2+1/2^2a2a3+...+1/2^nana(n+1)
=ï¼1/3-1/7ï¼+ï¼1/7-1/15ï¼+ï¼1/15-1/31ï¼+...+[1/(2^(n+1)-1)-1/(2^
(n+2)-1)]
=1/3-1/(2^(n+2)-1)
n->âæ¶ï¼ä¸å¼åé¢ä¸é¡¹è¶è¿äº0ï¼ä¸å¼è¶è¿äº1/3
2ãan,a(n+1)æ¯æ¹ç¨4^nx^2-4^nbnx+1=0çæ ¹ï¼æ ç©·æ°å{bn}ææ项çåæ¯
11/3ï¼æ±æ ç©·æ°å{an}çææ项çåã
解ï¼
æ ¹æ®é¦è¾¾å®çï¼
ana(n+1)=1/4^n
an+a(n+1)=4^nbn/4^n=bn
åä¸é¡¹ï¼
a(n+1)a(n+2)=1/4^(n+1)
ç¸é¤ï¼
a(n+2)/an=1/4
å æ¤ï¼æ°å{an}çå¥æ°é¡¹åå¶æ°é¡¹åå«æ¯ä¸¤ä¸ªå
¬æ¯ä¸º1/4ççæ¯æ°åãææ项
ä¹å=a1/(1-1/4)+a2/(1-1/4)=(4/3)(a1+a2)=(4/3)b1
åç 究{bn}
b1=a1+a2
b2=a2+a3
b3=a3+a4=a1/4+a2/4=(a1+a2)/4=b1/4
b4=a4+a5=a2/4+a3/4=(a2+a3)/4=b2/4
bn=an+a(n+1)=a(n-2)/4+a(n-1)/4=[a(n-2)+a(n-1)]/4=b(n-2)/4
å æ¤{bn}ä¹æ¯å¥æ°é¡¹åå¶æ°é¡¹åå«æ¯ä¸¤ä¸ªå
¬æ¯ä¸º1/4ççæ¯æ°åãææ项ä¹å
=b1/(1-1/4)+b2/(1-1/4)=(4/3)(b1+b2)=11/3
b1+b2=11/4=a1+a2+a2+a3=a1+2a2+a3
a1a2=1/4,a1=1/4a2
a2a3=1/4^2,a3=1/16a2
代å
¥ï¼
1/4a2+2a2+1/16a2=11/4
2a2+5/16a2-11/4=0
32a2^2-44a2+5=0
ï¼8a2-1ï¼ï¼4a2-5ï¼=0
a2=1/8ï¼æè
a2=5/4
a1=1/4a2=2ï¼æè
a1=1/4a2=1/5
b1=a1+a2=2+1/8=17/8ï¼æè
b1=1/5+5/4=29/20
a3=1/16a2=1/2ï¼æè
a3=1/16a2=1/20
b2=a2+a3=5/8ï¼æè
b2=a2+a3=5/4+1/20=26/20=13/10
b1+b2=17/8+5/8=22/8=11/4ï¼æè
b1+b2=29/20+26/20=55/20=11/4
æ£ç¡®
{an}个项ä¹å=(4/3)b1=(4/3)ï¼17/8ï¼=17/6
æè
{an}个项ä¹å=(4/3)b1=(4/3)ï¼29/20ï¼=29/15
3ãnâN*ï¼y=n(n+1)x^2ä¸y=ï¼2n+1ï¼x-1æªå¾ç线段å¨xè½´ä¸çå°å½±çé¿åº¦ä¹
åã
解ï¼
代å
¥å¾ï¼
n(n+1)x^2=ï¼2n+1ï¼x-1
n(n+1)x^2-ï¼2n+1ï¼x+1=0
(nx-1)[(n+1)x-1]=0
x1=1/(n+1),x2=1/n
|x1x2|=x2-x1=1/n-1/(n+1)
å项ä¹å=
(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/n-1/(n+1))
=1-1/(n+1)
n->âæ¶ï¼ä¸å¼è¶è¿äº1
4ãæ°å{an}ån项çåSn=na+n(n-1)b,(n=1,2,...),aï¼b为常æ°ã
ï¼1ï¼è¯æï¼{an}æ¯çå·®æ°åã
ï¼2ï¼è¯æï¼ä»¥(an,Sn/n-1)为åæ çç¹Pnï¼n=1ï¼2ï¼...)é½è½å¨åä¸æ¡ç´çº¿
ä¸ï¼å¹¶ååºæ¤ç´çº¿çæ¹ç¨ã
解
ï¼1ï¼
è¯æï¼
a1=S1=a
S(n-1)=(n-1)a+(n-1)(n-2)b
an=Sn-S(n-1)=a+(n-1)2b=a1+(n-1)2b
è¿æ¯å
¬å·®ä¸º2bççå·®æ°åã
(2)
Sn/n-1=a+(n-1)b-1
Pn(a+(n-1)2b,a+(n-1)b-1)
P(n+1)(a+2nb,a+nb-1)
PnP(n+1)çæç=[(a+nb-1)-(a+(n-1)b-1)]/[(a+2nb)-(a+(n-1)2b)]
=b/2b=1/2=å®å¼
å æ¤ï¼P1ï¼P2ï¼...,Pnå
񇧨
P1(a,a-1),
y=(1/2)(x-a)+(a-1)
Pnçåæ 代å
¥ï¼
左边=a+(n-1)b-1
å³è¾¹=(1/2)(a+(n-1)2b-a)+(a-1)
=(1/2)((n-1)2b)+(a-1)
=(n-1)b+(a-1)
=a+(n-1)b-1
左边=å³è¾¹ï¼æ£ç¡®
温馨提示:答案为网友推荐,仅供参考