关于铀的事实

如题所述

第1个回答  2022-11-07
铀矿石(图片版权所有)1945年8月6日,一枚10英尺长(3米)的炸弹从日本广岛上空坠落。不到一分钟,炸弹爆炸一英里内的一切都被抹去了。一场巨大的暴风雪迅速摧毁了数英里以外的地区,造成数万人死亡。

这是有史以来第一次在战争中使用原子弹,它使用了一种著名的元素来制造灾难:铀。这种放射性金属的独特之处在于它的一种同位素铀235是唯一能够维持核裂变反应的天然同位素。(同位素是原子核中中子数不同的元素的一种形式。)

要了解铀,了解放射性很重要。铀具有天然的放射性:它的核是不稳定的,因此元素处于不断衰变的状态,寻求一种更稳定的排列方式。事实上,铀是使放射性发现成为可能的元素。1897年,法国物理学家亨利·贝克勒尔在照相底片上留下了一些铀盐,作为研究光如何影响这些盐的一部分。令他惊讶的是,板块上起了雾,显示出铀盐的某种排放。1903年,贝克勒尔因这一发现与玛丽和皮埃尔·居里共同获得了诺贝尔奖。据杰斐逊国家直线加速器实验室称,

就是事实

,铀的性质为:

铀(Andrei Marincas Shutterstock)原子序数(核内质子数):92原子符号(元素周期表上):U原子量(原子平均质量):238.02891密度:室温下每立方厘米相18.95克:固态熔化点:2075华氏度(1135摄氏度)沸点:7468华氏度(4131摄氏度)同位素数量(同一元素的原子具有不同数量的中子):16,3种最常见的天然同位素:U-234(0.0054%的天然丰度)、U-235(0.7204%的天然丰度),德国化学家Martin Heinrich Klaproth的铀-K8(99.2742%天然丰度)历史在1789年发现了铀,尽管据化学工程师的说法,至少在公元79年,当氧化铀被用作陶瓷釉料和玻璃的着色剂时,人们就已经知道了它。Klaproth在矿物沥青铀矿中发现了元素,当时人们认为沥青铀矿是锌和铁矿石。该矿物在硝酸中溶解,然后在剩余的黄色沉淀物中加入钾(钾盐)。Klaproth的结论是,当钾盐和沉淀物之间的反应没有遵循任何已知元素的反应时,他发现了一种新元素。他的发现原来是铀氧化物,而不是他原先认为的纯铀。根据洛斯阿拉莫斯国家实验室,“KdSPE”“KdSPs”被命名为新发现的元素,它是最近发现的行星天王星,它是以希腊的天空神名命名的。1841年,法国化学家Eugène Melchior Péligot用钾加热四氯化铀,分离出纯铀。1896年,法国物理学家Antoine H.beckerel发现

铀具有放射性。贝克勒尔在一块未曝光的照相底片上留下了一个铀样品,底片变得混浊。据英国皇家化学学会(Royal Society of Chemistry)称,他得出的结论是,它发出的是看不见的光线。这是放射性研究的第一次,开辟了一个新的科学领域。波兰科学家玛丽·居里(Marie Curie)在贝克勒尔被发现后不久就创造了“放射性”一词,并与法国科学家皮埃尔·居里(Pierre Curie)一起继续研究,以发现其他放射性元素,如钋和镭,根据世界核协会的数据,宇宙中的铀在66亿年前在超新星中形成。它遍布地球,在大多数岩石中约占百万分之二到四。它在最丰富的元素中排名第48位高温 *** 玻璃中的铀酰化合物,使其在下沉时释放出光子。固体铀氧化物。这是铀在浓缩前通常出售的形式。据世界核协会(World Nuclear Association)称,铀在20个国家开采,其中一半以上来自加拿大、哈萨克斯坦、澳大利亚、尼日尔、俄罗斯和纳米比亚。伦泰克认为,所有人类和动物都会自然地暴露在食物、水、土壤和空气中微量的铀中。在大多数情况下,普通民众可以安全地忽略摄入的量,除非他们生活在危险的废物场、地雷附近,或者作物生长在受污染的土壤中或用受污染的水浇灌。鉴于

在核燃料中的重要性,研究人员对铀的功能非常感兴趣,特别是在熔毁期间。当反应堆周围的冷却系统发生故障,反应堆堆芯裂变反应产生的热量融化燃料时,就会发生熔毁。这发生在切尔诺贝利核电站的核灾难期间,导致了一个被称为“大象脚”的放射性物质团。

了解核燃料融化时的行为对核工程师建造安全壳至关重要,约翰·帕里斯说,2014年11月,Parise和来自阿贡国家实验室和其他机构的同事在《科学》杂志上发表了一篇论文,第一次阐明了核燃料的主要组成部分——熔化的二氧化铀的内部工作。二氧化铀不会熔化直到温度达到5432华氏度(3000℃),所以很难测量当物质变成液体时会发生什么,Parise告诉Live Science——没有足够坚固的容器。“KdSPE”“KdsPS”“我们的解决办法是用二氧化碳激光器从顶部加热二氧化铀球。“这个球悬浮在气流上,”帕里斯说你有一个物质球漂浮在气流上,所以你不需要一个容器。“KdSPE”“KDSPs”,然后研究人员将X射线穿过二氧化铀气泡,并用探测器测量X射线的散射。散射角揭示了二氧化铀内部的原子结构。“KdSPE”“KDSPs”。研究人员发现,在固体二氧化铀中,原子排列成一系列立方体,在网格状图案中与空隙交替,每个铀原子周围有八个氧原子。阿贡国家实验室研究员Lawrie Skinner在一段关于实验结果的视频中说,当这种物质接近其熔点时,氧元素会变得“疯狂”。氧原子开始四处移动,填满了空间,从一个铀原子跳到另一个铀原子。

最后,当材料熔化时,结构就像萨尔瓦多达利画的那样,立方体变成无序多面体。帕里斯说,在这一点上,每个铀原子周围的氧原子的数量(称为配位数)从8个减少到7个左右(有些铀原子周围有6个氧原子,有些则有7个,Parise说:“平均每个铀的6.7个氧原子。”KDSPE“KDSPs”知道这个数字使得我们有可能对二氧化铀在高温下的行为进行建模。下一步是增加更多的复杂性。核核不只是二氧化铀,他说。它们还包括锆等材料以及用于屏蔽反应堆内部的任何材料。研究小组现在计划添加这些材料来观察材料的反应如何变化。“KDSPE”“KDSPs”“你需要知道纯二氧化铀液体的行为,这样当你开始观察少量添加剂的影响时,你能看到它们有什么区别吗?”帕里斯说:

绝大多数铀用于发电,通常用于控制核反应。剩余的贫化铀可以回收利用,利用其他类型的能源,比如太阳的能量。Igor Usov和Milan Sykor的2017年专利

相似回答