第1个回答 2014-03-13
1.把点(-π/3,0)代入f(x)=sinx+acosx可得
0=sin(-π/3)+acos(-π/3)
a=-sin(-π/3)/cos(-π/3)
a=-tan(-π/3)=根号3=√3
2.
g(x)=[f(x)]^2-2=(sinx+√3cosx)^2-2=sinx^2+2√3sinxcosx+3cosx^2-2
=2sinx^2+2√3sinxcosx+2cosx^2+(cosx^2-sinx^2)-2=2-√3sin2x+cos2x-2=√3sin2x+cos2x
=2(sin2xcosπ/6+cos2xsinπ/6)=2sin(2x+π/6)
通过画图可得
所以最小正周期T= 2π /2 =π