arctanx等于多少?

如题所述

第1个回答  2023-11-29

arctanx=1/(1+x²)。anx是正切函数,其定义域是{x|x≠(π/2)+kπ,k∈Z},值域是R。arctanx是反正切函数,其定义域是R,反正切函数的值域为(-π/2,π/2)。

推导过程

设x=tant,则t=arctanx,两边求微分

dx=[(cos²t+sin²t)/(cos²x)]dt

dx=(1/cos²t)dt

dt/dx=cos²t

dt/dx=1/(1+tan²t)

因为x=tant

所以上式t'=1/(1+x²)

本回答被网友采纳
相似回答
大家正在搜