如何判断矩阵是否为正定矩阵

如题所述

第1个回答  2024-06-23

如果A和B都是实对称正定阵,且AB=BA=B^TA^T=(AB)^T

这说明AB是对称阵

再利用AB的特征值都是正数(因为AB相似于对称正定阵A^{1/2}BA^{1/2})得到AB对称正定。

例如:

^证明:因为A,B正定,所以 A^T=A,B^T=B

(必要性) 因为AB正定,所以 (AB)^T=AB

所以 BA=B^TA^T=(AB)^T=AB

(充分性) 因为 AB=BA

所以 (AB)^T=B^TA^T=BA=AB

所以 AB 是对称矩阵

由A,B正定, 存在可逆矩阵P,Q使 A=P^TP,B=Q^TQ.

故 AB = P^TPQ^TQ

而 QABQ^-1=QP^TPQ^T = (PQ)^T(PQ) 正定, 且与AB相似

故 AB 正定

扩展资料:

(1)广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。

例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)

(2)狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。

参考资料来源:百度百科-正定矩阵

2023年二级建造师-备考资料大礼包

¥1

二建转一建备考福利会

¥0.1

2022年中级经济师-母题班第一课

¥0.1

2022年初级经济师-母题班第一课

¥0.1

2023年初级会计职称 基础精讲班

¥299

2022年中级会计职称 备考资料包

¥9

2022年执业药师-母题提分班

¥199

    官方电话在线客服官方服务
      官方网站报考指南资料领取备考直播
相似回答
大家正在搜