a(n+1)=[an/(1+an)]^(1/2)
|an| > 0
{an} 递减
=> lim(n->∞)an exists
lim(n->∞)a(n+1)=lim(n->∞)[an/(1+an)]^(1/2)
L= (L/(1+L))^(1/2)
L^2(1+L) = L
L(L^2+L -1) =0
L = (-1+√5)/2
lim(n->∞)an =L =(-1+√5)/2
追问不对啊 令f(x)=(x/1+x)^1/2求导后是恒大于0的函数,单调递增啊。 怎么能递减你做的没问题?
本回答被提问者采纳